Not enough data to create a plot.
Try a different view from the menu above.
Federated Behavioural Planes: Explaining the Evolution of Client Behaviour in Federated Learning
Federated Learning (FL), a privacy-aware approach in distributed deep learning environments, enables many clients to collaboratively train a model without sharing sensitive data, thereby reducing privacy risks. However, enabling human trust and control over FL systems requires understanding the evolving behaviour of clients, whether beneficial or detrimental for the training, which still represents a key challenge in the current literature. To address this challenge, we introduce Federated Behavioural Planes (FBPs), a novel method to analyse, visualise, and explain the dynamics of FL systems, showing how clients behave under two different lenses: predictive performance (error behavioural space) and decisionmaking processes (counterfactual behavioural space). Our experiments demonstrate that FBPs provide informative trajectories describing the evolving states of clients and their contributions to the global model, thereby enabling the identification of clusters of clients with similar behaviours. Leveraging the patterns identified by FBPs, we propose a robust aggregation technique named Federated Behavioural Shields to detect malicious or noisy client models, thereby enhancing security and surpassing the efficacy of existing state-of-the-art FL defense mechanisms.
On the Robustness of Spectral Algorithms for Semirandom Stochastic Block Models Aditya Bhaskara Michael Kapralov
In a graph bisection problem, we are given a graph G with two equally-sized unlabeled communities, and the goal is to recover the vertices in these communities. A popular heuristic, known as spectral clustering, is to output an estimated community assignment based on the eigenvector corresponding to the second smallest eigenvalue of the Laplacian of G. Spectral algorithms can be shown to provably recover the cluster structure for graphs generated from certain probabilistic models, such as the Stochastic Block Model (SBM). However, spectral clustering is known to be non-robust to model mis-specification. Techniques based on semidefinite programming have been shown to be more robust, but they incur significant computational overheads. In this work, we study the robustness of spectral algorithms against semirandom adversaries.
Modeling Conceptual Understanding in Image Reference Games
An agent who interacts with a wide population of other agents needs to be aware that there may be variations in their understanding of the world. Furthermore, the machinery which they use to perceive may be inherently different, as is the case between humans and machines. In this work, we present both an image reference game between a speaker and a population of listeners where reasoning about the concepts other agents can comprehend is necessary and a model formulation with this capability. We focus on reasoning about the conceptual understanding of others, as well as adapting to novel gameplay partners and dealing with differences in perceptual machinery. Our experiments on three benchmark image/attribute datasets suggest that our learner indeed encodes information directly pertaining to the understanding of other agents, and that leveraging this information is crucial for maximizing gameplay performance.
df308fd90635b28d82558cf580c73ed9-AuthorFeedback.pdf
We sincerely thank all reviewers for their feedback. We will clarify the issues raised below and incorporate them into our final version. R2: Reactive baseline, define N + M (L144). "Sequence of episodes" refers to We will extend this with more examples in the main paper. Modeling users' understanding of an AI's mind [A] could provide an explanation component to teach users about the We would like to disentangle two orthogonal aspects of communication, i.e. modeling of other agents and language Our model with emergent language is an interesting extension.
Optimal Architectures in a Solvable Model of Deep Networks
Jonathan Kadmon, Haim Sompolinsky
Deep neural networks have received a considerable attention due to the success of their training for real world machine learning applications. They are also of great interest to the understanding of sensory processing in cortical sensory hierarchies. The purpose of this work is to advance our theoretical understanding of the computational benefits of these architectures. Using a simple model of clustered noisy inputs and a simple learning rule, we provide analytically derived recursion relations describing the propagation of the signals along the deep network. By analysis of these equations, and defining performance measures, we show that these model networks have optimal depths. We further explore the dependence of the optimal architecture on the system parameters.
RSA: Resolving Scale Ambiguities in Monocular Depth Estimators through Language Descriptions
We propose a method for metric-scale monocular depth estimation. Inferring depth from a single image is an ill-posed problem due to the loss of scale from perspective projection during the image formation process. Any scale chosen is a bias, typically stemming from training on a dataset; hence, existing works have instead opted to use relative (normalized, inverse) depth. Our goal is to recover metric-scaled depth maps through a linear transformation. The crux of our method lies in the observation that certain objects (e.g., cars, trees, street signs) are typically found or associated with certain types of scenes (e.g., outdoor).
Multi-view Anomaly Detection via Robust Probabilistic Latent Variable Models
We propose probabilistic latent variable models for multi-view anomaly detection, which is the task of finding instances that have inconsistent views given multi-view data. With the proposed model, all views of a non-anomalous instance are assumed to be generated from a single latent vector. On the other hand, an anomalous instance is assumed to have multiple latent vectors, and its different views are generated from different latent vectors. By inferring the number of latent vectors used for each instance with Dirichlet process priors, we obtain multiview anomaly scores. The proposed model can be seen as a robust extension of probabilistic canonical correlation analysis for noisy multi-view data. We present Bayesian inference procedures for the proposed model based on a stochastic EM algorithm. The effectiveness of the proposed model is demonstrated in terms of performance when detecting multi-view anomalies.