Plotting

Single-Agent Policy Tree Search With Guarantees

Neural Information Processing Systems

We introduce two novel tree search algorithms that use a policy to guide search. The first algorithm is a best-first enumeration that uses a cost function that allows us to prove an upper bound on the number of nodes to be expanded before reaching a goal state. We show that this best-first algorithm is particularly well suited for "needle-in-a-haystack" problems. The second algorithm is based on sampling and we prove an upper bound on the expected number of nodes it expands before reaching a set of goal states. We show that this algorithm is better suited for problems where many paths lead to a goal. We validate these tree search algorithms on 1,000 computer-generated levels of Sokoban, where the policy used to guide the search comes from a neural network trained using A3C. Our results show that the policy tree search algorithms we introduce are competitive with a state-of-the-art domain-independent planner that uses heuristic search.


Regularizing by the Variance of the Activations' Sample-Variances

Neural Information Processing Systems

Normalization techniques play an important role in supporting efficient and often more effective training of deep neural networks. While conventional methods explicitly normalize the activations, we suggest to add a loss term instead. This new loss term encourages the variance of the activations to be stable and not vary from one random mini-batch to the next. As we prove, this encourages the activations to be distributed around a few distinct modes. We also show that if the inputs are from a mixture of two Gaussians, the new loss would either join the two together, or separate between them optimally in the LDA sense, depending on the prior probabilities. Finally, we are able to link the new regularization term to the batchnorm method, which provides it with a regularization perspective. Our experiments demonstrate an improvement in accuracy over the batchnorm technique for both CNNs and fully connected networks.


On Learning Intrinsic Rewards for Policy Gradient Methods

Neural Information Processing Systems

In many sequential decision making tasks, it is challenging to design reward functions that help an RL agent efficiently learn behavior that is considered good by the agent designer. A number of different formulations of the reward-design problem have been proposed in the literature. In this paper we build on the Optimal Rewards Framework of Singh et al. [2010] that defines the optimal intrinsic reward function as one that when used by an RL agent achieves behavior that optimizes the task-specifying or extrinsic reward function. Previous work in this framework has shown how good intrinsic reward functions can be learned for lookahead search based planning agents. Whether it is possible to learn intrinsic reward functions for learning agents remains an open problem. In this paper we derive a novel algorithm for learning intrinsic rewards for policy-gradient based learning agents. We compare the performance of an augmented agent that uses our algorithm to provide additive intrinsic rewards to an A2C-based policy learner (for Atari games) and a PPO-based policy learner (for Mujoco domains) with a baseline agent that uses the same policy learners but with only extrinsic rewards. We also compare our method with using a constant "live bonus" and with using a count-based exploration bonus (i.e., pixel-SimHash). Our results show improved performance on most but not all of the domains.


From Stochastic Planning to Marginal MAP

Neural Information Processing Systems

It is well known that the problems of stochastic planning and probabilistic inference are closely related. This paper makes two contributions in this context. The first is to provide an analysis of the recently developed SOGBOFA heuristic planning algorithm that was shown to be effective for problems with large factored state and action spaces. It is shown that SOGBOFA can be seen as a specialized inference algorithm that computes its solutions through a combination of a symbolic variant of belief propagation and gradient ascent. The second contribution is a new solver for Marginal MAP (MMAP) inference. We introduce a new reduction from MMAP to maximum expected utility problems which are suitable for the symbolic computation in SOGBOFA. This yields a novel algebraic gradient-based solver (AGS) for MMAP. An experimental evaluation illustrates the potential of AGS in solving difficult MMAP problems.


Completing State Representations using Spectral Learning

Neural Information Processing Systems

A central problem in dynamical system modeling is state discovery--that is, finding a compact summary of the past that captures the information needed to predict the future. Predictive State Representations (PSRs) enable clever spectral methods for state discovery; however, while consistent in the limit of infinite data, these methods often suffer from poor performance in the low data regime. In this paper we develop a novel algorithm for incorporating domain knowledge, in the form of an imperfect state representation, as side information to speed spectral learning for PSRs. We prove theoretical results characterizing the relevance of a user-provided state representation, and design spectral algorithms that can take advantage of a relevant representation. Our algorithm utilizes principal angles to extract the relevant components of the representation, and is robust to misspecification. Empirical evaluation on synthetic HMMs, an aircraft identification domain, and a gene splice dataset shows that, even with weak domain knowledge, the algorithm can significantly outperform standard PSR learning.




Reversible Recurrent Neural Networks

Neural Information Processing Systems

Recurrent neural networks (RNNs) provide state-of-the-art performance in processing sequential data but are memory intensive to train, limiting the flexibility of RNN models which can be trained. Reversible RNNs--RNNs for which the hidden-to-hidden transition can be reversed--offer a path to reduce the memory requirements of training, as hidden states need not be stored and instead can be recomputed during backpropagation. We first show that perfectly reversible RNNs, which require no storage of the hidden activations, are fundamentally limited because they cannot forget information from their hidden state. We then provide a scheme for storing a small number of bits in order to allow perfect reversal with forgetting. Our method achieves comparable performance to traditional models while reducing the activation memory cost by a factor of 10-15. We extend our technique to attention-based sequence-to-sequence models, where it maintains performance while reducing activation memory cost by a factor of 5-10 in the encoder, and a factor of 10-15 in the decoder.


A Lyapunov-based Approach to Safe Reinforcement Learning

Neural Information Processing Systems

In many real-world reinforcement learning (RL) problems, besides optimizing the main objective function, an agent must concurrently avoid violating a number of constraints. In particular, besides optimizing performance, it is crucial to guarantee the safety of an agent during training as well as deployment (e.g., a robot should avoid taking actions - exploratory or not - which irrevocably harm its hardware). To incorporate safety in RL, we derive algorithms under the framework of constrained Markov decision processes (CMDPs), an extension of the standard Markov decision processes (MDPs) augmented with constraints on expected cumulative costs.


Man who posted deepfake images of prominent Australian women could face 450,000 penalty

The Guardian

The online safety regulator wants a 450,000 maximum penalty imposed on a man who posted deepfake images of prominent Australian women to a website, in the first case of its kind heard in an Australian court. The eSafety commissioner has launched proceedings against Anthony Rotondo over his failure to remove "intimate images" of several prominent Australian women from a deepfake pornography website. The federal court has kept the names of the women confidential. Rotondo initially refused to comply with the order while he was based in the Philippines, the court heard, but the commissioner launched the case once he returned to Australia. Rotondo posted the images to the MrDeepFakes website, which has since been shut down.