A Lyapunov-based Approach to Safe Reinforcement Learning
Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, Mohammad Ghavamzadeh
–Neural Information Processing Systems
In many real-world reinforcement learning (RL) problems, besides optimizing the main objective function, an agent must concurrently avoid violating a number of constraints. In particular, besides optimizing performance, it is crucial to guarantee the safety of an agent during training as well as deployment (e.g., a robot should avoid taking actions - exploratory or not - which irrevocably harm its hardware). To incorporate safety in RL, we derive algorithms under the framework of constrained Markov decision processes (CMDPs), an extension of the standard Markov decision processes (MDPs) augmented with constraints on expected cumulative costs.
Neural Information Processing Systems
Oct-7-2024, 10:12:26 GMT