Not enough data to create a plot.
Try a different view from the menu above.
A Implementation details Image augmentations BYOL uses the same set of image augmentations as in SimCLR
Additional details on the image augmentations are in Appendix C. Architecture Table 6: Parameters used to generate image augmentations. This method achieves better performance both in top-1 and top-5 accuracy. We report in Table 7 the top-1 and top-5 accuracy on ImageNet using this modified protocol. At training time, we apply spatial augmentations, i.e., random Note that large networks are facing overfitting problems. Top-1 and top-5 accuracies are reported in %. Results are presented in Figure 6.
Guarantees for Self-Play in Multiplayer Games via Polymatrix Decomposability
Self-play is a technique for machine learning in multi-agent systems where a learning algorithm learns by interacting with copies of itself. Self-play is useful for generating large quantities of data for learning, but has the drawback that the agents the learner will face post-training may have dramatically different behavior than the learner came to expect by interacting with itself. For the special case of two-player constant-sum games, self-play that reaches Nash equilibrium is guaranteed to produce strategies that perform well against any post-training opponent; however, no such guarantee exists for multiplayer games. We show that in games that approximately decompose into a set of two-player constant-sum games (called constant-sum polymatrix games) where global ฯต-Nash equilibria are boundedly far from Nash equilibria in each subgame (called subgame stability), any no-external-regret algorithm that learns by self-play will produce a strategy with bounded vulnerability. For the first time, our results identify a structural property of multiplayer games that enable performance guarantees for the strategies produced by a broad class of self-play algorithms. We demonstrate our findings through experiments on Leduc poker.
Learning Nonparametric Volterra Kernels with Gaussian Processes
This paper introduces a method for the nonparametric Bayesian learning of nonlinear operators, through the use of the Volterra series with kernels represented using Gaussian processes (GPs), which we term the nonparametric Volterra kernels model (NVKM). When the input function to the operator is unobserved and has a GP prior, the NVKM constitutes a powerful method for both single and multiple output regression, and can be viewed as a nonlinear and nonparametric latent force model. When the input function is observed, the NVKM can be used to perform Bayesian system identification. We use recent advances in efficient sampling of explicit functions from GPs to map process realisations through the Volterra series without resorting to numerical integration, allowing scalability through doubly stochastic variational inference, and avoiding the need for Gaussian approximations of the output processes. We demonstrate the performance of the model for both multiple output regression and system identification using standard benchmarks.
Spectral Editing of Activations for Large Language Model Alignment
Large language models (LLMs) often exhibit undesirable behaviours, such as generating untruthful or biased content. Editing their internal representations has been shown to be effective in mitigating such behaviours on top of the existing alignment methods. We propose a novel inference-time editing method, namely spectral editing of activations (SEA), to project the input representations into directions with maximal covariance with the positive demonstrations (e.g., truthful) while minimising covariance with the negative demonstrations (e.g., hallucinated). We also extend our method to non-linear editing using feature functions. We run extensive experiments on benchmarks concerning truthfulness and bias with six open-source LLMs of different sizes and model families. The results demonstrate the superiority of SEA in effectiveness, generalisation to similar tasks, as well as computation and data efficiency. We also show that SEA editing only has a limited negative impact on other model capabilities.
Contrasting with Symile: Simple Model-Agnostic Representation Learning for Unlimited Modalities
Contrastive learning methods, such as CLIP, leverage naturally paired data--for example, images and their corresponding text captions--to learn general representations that transfer efficiently to downstream tasks. While such approaches are generally applied to two modalities, domains such as robotics, healthcare, and video need to support many types of data at once. We show that the pairwise application of CLIP fails to capture joint information between modalities, thereby limiting the quality of the learned representations. To address this issue, we present Symile, a simple contrastive learning approach that captures higherorder information between any number of modalities. Symile provides a flexible, architecture-agnostic objective for learning modality-specific representations. To develop Symile's objective, we derive a lower bound on total correlation, and show that Symile representations for any set of modalities form a sufficient statistic for predicting the remaining modalities. Symile outperforms pairwise CLIP, even with modalities missing in the data, on cross-modal classification and retrieval across several experiments including on an original multilingual dataset of 33M image, text and audio samples and a clinical dataset of chest X-rays, electrocardiograms, and laboratory measurements.