Not enough data to create a plot.
Try a different view from the menu above.
Fair Hierarchical Clustering
As machine learning has become more prevalent, researchers have begun to recognize the necessity of ensuring machine learning systems are fair. Recently, there has been an interest in defining a notion of fairness that mitigates over-representation in traditional clustering. In this paper we extend this notion to hierarchical clustering, where the goal is to recursively partition the data to optimize a specific objective. For various natural objectives, we obtain simple, efficient algorithms to find a provably good fair hierarchical clustering. Empirically, we show that our algorithms can find a fair hierarchical clustering, with only a negligible loss in the objective.
Particle Cloud Generation with Message Passing Generative Adversarial Networks
In high energy physics (HEP), jets are collections of correlated particles produced ubiquitously in particle collisions such as those at the CERN Large Hadron Collider (LHC). Machine learning (ML)-based generative models, such as generative adversarial networks (GANs), have the potential to significantly accelerate LHC jet simulations. However, despite jets having a natural representation as a set of particles in momentum-space, a.k.a. a particle cloud, there exist no generative models applied to such a dataset. In this work, we introduce a new particle cloud dataset (JetNet), and apply to it existing point cloud GANs. Results are evaluated using (1) 1-Wasserstein distances between high-and low-level feature distributions, (2) a newly developed Fréchet ParticleNet Distance, and (3) the coverage and (4) minimum matching distance metrics. Existing GANs are found to be inadequate for physics applications, hence we develop a new message passing GAN (MPGAN), which outperforms existing point cloud GANs on virtually every metric and shows promise for use in HEP. We propose JetNet as a novel point-cloud-style dataset for the ML community to experiment with, and set MPGAN as a benchmark to improve upon for future generative models.
Autoregressive Image Generation without Vector Quantization Tianhong Li1 He Li3 Mingyang Deng
Conventional wisdom holds that autoregressive models for image generation are typically accompanied by vector-quantized tokens. We observe that while a discrete-valued space can facilitate representing a categorical distribution, it is not a necessity for autoregressive modeling. In this work, we propose to model the per-token probability distribution using a diffusion procedure, which allows us to apply autoregressive models in a continuous-valued space. Rather than using categorical cross-entropy loss, we define a Diffusion Loss function to model the pertoken probability. This approach eliminates the need for discrete-valued tokenizers. We evaluate its effectiveness across a wide range of cases, including standard autoregressive models and generalized masked autoregressive (MAR) variants. By removing vector quantization, our image generator achieves strong results while enjoying the speed advantage of sequence modeling. We hope this work will motivate the use of autoregressive generation in other continuous-valued domains and applications. Code is available at https://github.com/LTH14/mar.
Homomorphic Matrix Completion
In recommendation systems, global positioning, system identification, and mobile social networks, it is a fundamental routine that a server completes a low-rank matrix from an observed subset of its entries. However, sending data to a cloud server raises up the data privacy concern due to eavesdropping attacks and the singlepoint failure problem, e.g., the Netflix prize contest was canceled after a privacy lawsuit. In this paper, we propose a homomorphic matrix completion algorithm for privacy-preserving purpose. First, we formulate a homomorphic matrix completion problem where a server performs matrix completion on cyphertexts, and propose an encryption scheme that is fast and easy to implement. Secondly, we prove that the proposed scheme satisfies the homomorphism property that decrypting the recovered matrix on cyphertexts will obtain the target matrix (on plaintexts). Thirdly, we prove that the proposed scheme satisfies an (,)-differential privacy property.
Diversity Is Not All You Need: Training A Robust Cooperative Agent Needs Specialist Partners
Partner diversity is known to be crucial for training a robust generalist cooperative agent. In this paper, we show that partner specialization, in addition to diversity, is crucial for the robustness of a downstream generalist agent. We propose a principled method for quantifying both the diversity and specialization of a partner population based on the concept of mutual information.