Not enough data to create a plot.
Try a different view from the menu above.
Neural Flow Diffusion Models: Learnable Forward Process for Improved Diffusion Modelling
Conventional diffusion models often rely on a fixed forward process, which implicitly defines complex marginal distributions over latent variables. This can often complicate the reverse process' task in learning generative trajectories, and results in costly inference for diffusion models. To address these limitations, we introduce Neural Flow Diffusion Models (NFDM), a novel framework that enhances diffusion models by supporting a broader range of forward processes beyond the standard linear Gaussian. We also propose a novel parameterization technique for learning the forward process. Our framework provides an end-to-end, simulation-free optimization objective, effectively minimizing a variational upper bound on the negative log-likelihood. Experimental results demonstrate NFDM's strong performance, evidenced by state-of-the-art likelihoods across a range of image generation tasks. Furthermore, we investigate NFDM's capacity for learning generative dynamics with specific characteristics, such as deterministic straight lines trajectories, and demonstrate how the framework can be adopted for learning bridges between two distributions. The results underscores NFDM's versatility and its potential for a wide range of applications.
final_openreview_d4_corrected_footnote
Over recent years, an increasing amount of compute and data has been poured into training large language models (LLMs), usually by doing one-pass learning on as many tokens as possible randomly selected from large-scale web corpora. While training on ever-larger portions of the internet leads to consistent performance improvements, the size of these improvements diminishes with scale, and there has been little work exploring the effect of data selection on pre-training and downstream performance beyond simple de-duplication methods such as Min-Hash. Here, we show that careful data selection (on top of de-duplicated data) via pre-trained model embeddings can speed up training (20% efficiency gains) and improves average downstream accuracy on 16 NLP tasks (up to 2%) at the 6.7B model scale. Furthermore, we show that repeating data intelligently consistently outperforms baseline training (while repeating random data performs worse than baseline training). Our results indicate that clever data selection can significantly improve LLM pre-training, calls into question the common practice of training for a single epoch on as much data as possible, and demonstrates a path to keep improving our models past the limits of randomly sampling web data.
Supplementary Materials for "Echoes Beyond Points: Unleashing the Power of Raw Radar Data in Multi-modality Fusion "
In this section, we will provide a detailed proof for the correspondence between pillar in radar coordinate and column in camera coordinate as described in Section 4.2 of our main paper. Our goal is to find a situation that the pillar is projected as a column on the image plane. Figure S1: Illustration of coordinate system transformation. The ground truth bounding boxes are in pink, while the predicted bounding boxes are in green with the confidence score on its upper right. The LiDAR points and the radar points are respectively in blue and red.
Echoes Beyond Points: Unleashing the Power of Raw Radar Data in Multi-modality Fusion
Radar is ubiquitous in autonomous driving systems due to its low cost and good adaptability to bad weather. Nevertheless, the radar detection performance is usually inferior because its point cloud is sparse and not accurate due to the poor azimuth and elevation resolution. Moreover, point cloud generation algorithms already drop weak signals to reduce the false targets which may be suboptimal for the use of deep fusion. In this paper, we propose a novel method named EchoFusion to skip the existing radar signal processing pipeline and then incorporate the radar raw data with other sensors. Specifically, we first generate the Bird's Eye View (BEV) queries and then take corresponding spectrum features from radar to fuse with other sensors. By this approach, our method could utilize both rich and lossless distance and speed clues from radar echoes and rich semantic clues from images, making our method surpass all existing methods on the RADIal dataset, and approach the performance of LiDAR.
Hybrid Mamba for Few-Shot Segmentation
Many few-shot segmentation (FSS) methods use cross attention to fuse support foreground (FG) into query features, regardless of the quadratic complexity. A recent advance Mamba can also well capture intra-sequence dependencies, yet the complexity is only linear. Hence, we aim to devise a cross (attention-like) Mamba to capture inter-sequence dependencies for FSS. A simple idea is to scan on support features to selectively compress them into the hidden state, which is then used as the initial hidden state to sequentially scan query features. Nevertheless, it suffers from (1) support forgetting issue: query features will also gradually be compressed when scanning on them, so the support features in hidden state keep reducing, and many query pixels cannot fuse sufficient support features; (2) intra-class gap issue: query FG is essentially more similar to itself rather than to support FG, i.e., query may prefer not to fuse support features but their own ones from the hidden state, yet the success of FSS relies on the effective use of support information. To tackle them, we design a hybrid Mamba network (HMNet), including (1) a support recapped Mamba to periodically recap the support features when scanning query, so the hidden state can always contain rich support information; (2) a query intercepted Mamba to forbid the mutual interactions among query pixels, and encourage them to fuse more support features from the hidden state. Consequently, the support information is better utilized, leading to better performance. Extensive experiments have been conducted on two public benchmarks, showing the superiority of HMNet. The code is available at https://github.com/Sam1224/HMNet.