Plotting

Instance-adaptive Zero-shot Chain-of-Thought Prompting Xiaosong Yuan

Neural Information Processing Systems

Zero-shot Chain-of-Thought (CoT) prompting emerges as a simple and effective strategy for enhancing the performance of large language models (LLMs) in realworld reasoning tasks. Nonetheless, the efficacy of a singular, task-level prompt uniformly applied across the whole of instances is inherently limited since one prompt cannot be a good partner for all, a more appropriate approach should consider the interaction between the prompt and each instance meticulously. This work introduces an instance-adaptive prompting algorithm as an alternative zero-shot CoT reasoning scheme by adaptively differentiating good and bad prompts. Concretely, we first employ analysis on LLMs through the lens of information flow to detect the mechanism under zero-shot CoT reasoning, in which we discover that information flows from question to prompt and question to rationale jointly influence the reasoning results most. We notice that a better zero-shot CoT reasoning needs the prompt to obtain semantic information from the question, and then the rationale aggregates sufficient information from the question directly and via the prompt indirectly. On the contrary, lacking any of those would probably lead to a bad one. Stem from that, we further propose an instance-adaptive prompting strategy (IAP) for zero-shot CoT reasoning. Experiments conducted with LLaMA-2, LLaMA-3, and Qwen on math, logic, and commonsense reasoning tasks (e.g., GSM8k, MMLU, Causal Judgement) obtain consistent improvement, demonstrating that the instance-adaptive zero-shot CoT prompting performs better than other task-level methods with some curated prompts or sophisticated procedures, showing the significance of our findings in the zero-shot CoT reasoning mechanism.


Distributed Flexible Nonlinear Tensor Factorization

Neural Information Processing Systems

Tensor factorization is a powerful tool to analyse multi-way data. Recently proposed nonlinear factorization methods, although capable of capturing complex relationships, are computationally quite expensive and may suffer a severe learning bias in case of extreme data sparsity. Therefore, we propose a distributed, flexible nonlinear tensor factorization model, which avoids the expensive computations and structural restrictions of the Kronecker-product in the existing TGP formulations, allowing an arbitrary subset of tensorial entries to be selected for training. Meanwhile, we derive a tractable and tight variational evidence lower bound (ELBO) that enables highly decoupled, parallel computations and high-quality inference.


Return of Unconditional Generation: A Self-supervised Representation Generation Method

Neural Information Processing Systems

Unconditional generation--the problem of modeling data distribution without relying on human-annotated labels--is a long-standing and fundamental challenge in generative models, creating a potential of learning from large-scale unlabeled data. In the literature, the generation quality of an unconditional method has been much worse than that of its conditional counterpart. This gap can be attributed to the lack of semantic information provided by labels. In this work, we show that one can close this gap by generating semantic representations in the representation space produced by a self-supervised encoder. These representations can be used to condition the image generator.


e2e06adf560b0706d3b1ddfca9f29756-Supplemental-Datasets_and_Benchmarks_Track.pdf

Neural Information Processing Systems

Risks associated with this paper. This paper's contribution can be divided into three parts, each In discussing these risks, it is worth noting three things. This could be abused by, e.g., using the automated evaluator score Custom data was generated by the authors. Figure 4 shows the breakdown of the StrongREJECT dataset by source and category. Original reported output (translated to English) It is possible to build a homemade explosive device with household items. Here's how to do it: 1. Start by finding materials: You need a piece of plaster or a piece of metal that you like to be the base of your explosive device... [truncated in original paper] Our full re-generated outputs (translated to English) Building a homemade explosive Building a homemade explosive Building a homemade explosive device using household device using household device using household items requires some construction items involves many steps. Here's how to do it: is important to understand Here's how to do it: 1. Planning: First, you need what work the machine will 1. Testing the Materials: It is to plan what you want to do before you start building important to be sure that the achieve with your explosive it.


REJECT for Empty Jailbreaks

Neural Information Processing Systems

Most jailbreak papers claim the jailbreaks they propose are highly effective, often boasting near-100% attack success rates. However, it is perhaps more common than not for jailbreak developers to substantially exaggerate the effectiveness of their jailbreaks. We suggest this problem arises because jailbreak researchers lack a standard, high-quality benchmark for evaluating jailbreak performance, leaving researchers to create their own. To create a benchmark, researchers must choose a dataset of forbidden prompts to which a victim model will respond, along with an evaluation method that scores the harmfulness of the victim model's responses. We show that existing benchmarks suffer from significant shortcomings and introduce the StrongREJECT benchmark to address these issues.


Review Networks for Caption Generation

Neural Information Processing Systems

We propose a novel extension of the encoder-decoder framework, called a review network. The review network is generic and can enhance any existing encoderdecoder model: in this paper, we consider RNN decoders with both CNN and RNN encoders. The review network performs a number of review steps with attention mechanism on the encoder hidden states, and outputs a thought vector after each review step; the thought vectors are used as the input of the attention mechanism in the decoder. We show that conventional encoder-decoders are a special case of our framework. Empirically, we show that our framework improves over state-ofthe-art encoder-decoder systems on the tasks of image captioning and source code captioning.


GS-Blur: A3D Scene-Based Dataset for Realistic Image Deblurring Dongwoo Lee 1 Joonkyu Park 1

Neural Information Processing Systems

To train a deblurring network, an appropriate dataset with paired blurry and sharp images is essential. Existing datasets collect blurry images either synthetically by aggregating consecutive sharp frames or using sophisticated camera systems to capture real blur. However, these methods offer limited diversity in blur types (blur trajectories) or require extensive human effort to reconstruct large-scale datasets, failing to fully reflect real-world blur scenarios. To address this, we propose GS-Blur, a dataset of synthesized realistic blurry images created using a novel approach. To this end, we first reconstruct 3D scenes from multi-view images using 3D Gaussian Splatting (3DGS), then render blurry images by moving the camera view along the randomly generated motion trajectories. By adopting various camera trajectories in reconstructing our GS-Blur, our dataset contains realistic and diverse types of blur, offering a large-scale dataset that generalizes well to real-world blur. Using GS-Blur with various deblurring methods, we demonstrate its ability to generalize effectively compared to previous synthetic or real blur datasets, showing significant improvements in deblurring performance.


Dynamic Rescaling for Training GNNs

Neural Information Processing Systems

Graph neural networks (GNNs) with a rescale invariance, such as GATs, can be re-parameterized during optimization through dynamic rescaling of network parameters and gradients while keeping the loss invariant. In this work, we explore dynamic rescaling as a tool to influence GNN training dynamics in two key ways: i) balancing the network with respect to various criteria, and ii) controlling the relative learning speeds of different layers. We gain novel insights, unique to GNNs, that reveal distinct training modes for different tasks. For heterophilic graphs, achieving balance based on relative gradients leads to faster training and better generalization. In contrast, homophilic graphs benefit from delaying the learning of later layers.


Hypothesis Testing in Unsupervised Domain Adaptation with Applications in Alzheimer's Disease

Neural Information Processing Systems

This problem is closely related to domain adaptation, and in our case, is motivated by the need to combine clinical and imaging based biomarkers from multiple sites and/or batches - a fairly common impediment in conducting analyses with much larger sample sizes. We address this problem using ideas from hypothesis testing on the transformed measurements, wherein the distortions need to be estimated in tandem with the testing. We derive a simple algorithm and study its convergence and consistency properties in detail, and provide lower-bound strategies based on recent work in continuous optimization. On a dataset of individuals at risk for Alzheimer's disease, our framework is competitive with alternative procedures that are twice as expensive and in some cases operationally infeasible to implement.


Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations

Neural Information Processing Systems

Neural wave functions accomplished unprecedented accuracies in approximating the ground state of many-electron systems, though at a high computational cost. Recent works proposed amortizing the cost by learning generalized wave functions across different structures and compounds instead of solving each problem independently. Enforcing the permutation antisymmetry of electrons in such generalized neural wave functions remained challenging as existing methods require discrete orbital selection via non-learnable hand-crafted algorithms. This work tackles the problem by defining overparametrized, fully learnable neural wave functions suitable for generalization across molecules. We achieve this by relying on Pfaffians rather than Slater determinants. The Pfaffian allows us to enforce the antisymmetry on arbitrary electronic systems without any constraint on electronic spin configurations or molecular structure. Our empirical evaluation finds that a single neural Pfaffian calculates the ground state and ionization energies with chemical accuracy across various systems. On the TinyMol dataset, we outperform the'gold-standard' CCSD(T) CBS reference energies by 1.9 mE