Plotting

VLSI Implementations of Learning and Memory Systems: A Review

Neural Information Processing Systems

ABSTRACT A large number of VLSI implementationsof neural networkmodels have been reported. The diversityof these implementations is noteworthy. This paper attempts to put a group of representative VLSI implementations in perspective by comparing and contrasting them. IMPLEMENTATION Changing the way information is represented can be beneficial. For examplea change of representation can make information more compact for storage and transmission.




e-Entropy and the Complexity of Feedforward Neural Networks

Neural Information Processing Systems

We are concerned with the problem of the number of nodes needed in a feedforward neural network in order to represent a fUllction to within a specified accuracy.


Distributed Recursive Structure Processing

Neural Information Processing Systems

Harmonic grammar (Legendre, et al., 1990) is a connectionist theory of linguistic on the assumption that the well-formednesswell-formed ness based of a sentence can be measured by the harmony (negative energy) of the corresponding connectionist state. Assuming a lower-level connectionist that obeys a few general connectionist principles but is otherwisenetwork we construct a higher-level network with an equivalent harmonyunspecified, function that captures the most linguistically relevant global aspects of the lower level network. In this paper, we extend the tensor product representation (Smolensky 1990) to fully recursive representations of recursively structured objects like sentences in the lower-level network.



Signal Processing by Multiplexing and Demultiplexing in Neurons

Neural Information Processing Systems

The signal content of the codes encoded by a presynaptic neuron will be decoded by some other neurons postsynpatically. Neurons are often thought to be encoding a single type of 282 Signal Processing by Multiplexing and Demultiplexing in Neurons 283 codes. But there is evidence suggesting that neurons may encode more than one type of signals. One of the mechanisms for embedding multiple types of signals processed by a neuron is multiplexing. When the signals are multiplexed, they also need to be demultiplexed to extract the useful information transmitted by the neurons. Theoretical and experimental evidence of such multiplexing and demultiplexing scheme for signal processing by neurons will be given below.


Applications of Neural Networks in Video Signal Processing

Neural Information Processing Systems

Although color TV is an established technology, there are a number of longstanding problems for which neural networks may be suited. Impulse noise is such a problem, and a modular neural network approach is presented inthis paper. The training and analysis was done on conventional computers, while real-time simulations were performed on a massively parallel computercalled the Princeton Engine. The network approach was compared to a conventional alternative, a median filter. Real-time simulations andquantitative analysis demonstrated the technical superiority of the neural system. Ongoing work is investigating the complexity and cost of implementing this system in hardware.


Lg Depth Estimation and Ripple Fire Characterization Using Artificial Neural Networks

Neural Information Processing Systems

This srudy has demonstrated how artificial neural networks (ANNs) can be used to characterize seismic sources using high-frequency regional seismic data. We have taken the novel approach of using ANNs as a research tool for obtaining seismic source information, specifically depth of focus for earthquakes and ripple-fire characteristics for economic blasts, rather than as just a feature classifier between earthquake and explosion populations. Overall, we have found that ANNs have potential applications to seismic event characterization and identification, beyond just as a feature classifier. In future studies, these techniques should be applied to actual data of regional seismic events recorded at the new regional seismic arrays. The results of this study indicates that an ANN should be evaluated as part of an operational seismic event identification system. 1 INTRODUCTION ANNs have usually been used as pattern matching algorithms, and recent studies have applied ANNs to standard classification between classes of earthquakes and explosions using wavefonn features (Dowla, et al, 1989), (Dysart and Pulli, 1990).


Leaning by Combining Memorization and Gradient Descent

Neural Information Processing Systems

We have created a radial basis function network that allocates a new computational unit whenever an unusual pattern is presented to the network. The network learns by allocating new units and adjusting the parameters of existing units. If the network performs poorly on a presented pattern, then a new unit is allocated which memorizes the response to the presented pattern. If the network performs well on a presented pattern, then the network parameters are updated using standard LMS gradient descent. For predicting the Mackey Glass chaotic time series, our network learns much faster than do those using back-propagation and uses a comparable number of synapses.