Lg Depth Estimation and Ripple Fire Characterization Using Artificial Neural Networks

Perry, John L., Baumgardt, Douglas R.

Neural Information Processing Systems 

This srudy has demonstrated how artificial neural networks (ANNs) can be used to characterize seismic sources using high-frequency regional seismic data. We have taken the novel approach of using ANNs as a research tool for obtaining seismic source information, specifically depth of focus for earthquakes and ripple-fire characteristics for economic blasts, rather than as just a feature classifier between earthquake and explosion populations. Overall, we have found that ANNs have potential applications to seismic event characterization and identification, beyond just as a feature classifier. In future studies, these techniques should be applied to actual data of regional seismic events recorded at the new regional seismic arrays. The results of this study indicates that an ANN should be evaluated as part of an operational seismic event identification system. 1 INTRODUCTION ANNs have usually been used as pattern matching algorithms, and recent studies have applied ANNs to standard classification between classes of earthquakes and explosions using wavefonn features (Dowla, et al, 1989), (Dysart and Pulli, 1990).

Similar Docs  Excel Report  more

TitleSimilaritySource
None found