Not enough data to create a plot.
Try a different view from the menu above.
Reproducibility in Multiple Instance Learning: A Case For Algorithmic Unit Tests
Multiple Instance Learning (MIL) is a sub-domain of classification problems with positive and negative labels and a "bag" of inputs, where the label is positive if and only if a positive element is contained within the bag, and otherwise is negative. Training in this context requires associating the bag-wide label to instance-level information, and implicitly contains a causal assumption and asymmetry to the task (i.e., you can't swap the labels without changing the semantics). MIL problems occur in healthcare (one malignant cell indicates cancer), cyber security (one malicious executable makes an infected computer), and many other tasks. In this work, we examine five of the most prominent deep-MIL models and find that none of them respects the standard MIL assumption. They are able to learn anticorrelated instances, i.e., defaulting to "positive" labels until seeing a negative counter-example, which should not be possible for a correct MIL model.
Challenges and Opportunities in High-dimensional Variational Inference
Current black-box variational inference (BBVI) methods require the user to make numerous design choices--such as the selection of variational objective and approximating family--yet there is little principled guidance on how to do so. We develop a conceptual framework and set of experimental tools to understand the effects of these choices, which we leverage to propose best practices for maximizing posterior approximation accuracy. Our approach is based on studying the pre-asymptotic tail behavior of the density ratios between the joint distribution and the variational approximation, then exploiting insights and tools from the importance sampling literature. Our framework and supporting experiments help to distinguish between the behavior of BBVI methods for approximating low-dimensional versus moderate-to-high-dimensional posteriors. In the latter case, we show that mass-covering variational objectives are difficult to optimize and do not improve accuracy, but flexible variational families can improve accuracy and the effectiveness of importance sampling--at the cost of additional optimization challenges. Therefore, for moderate-to-high-dimensional posteriors we recommend using the (mode-seeking) exclusive KL divergence since it is the easiest to optimize, and improving the variational family or using model parameter transformations to make the posterior and optimal variational approximation more similar. On the other hand, in low-dimensional settings, we show that heavy-tailed variational families and mass-covering divergences are effective and can increase the chances that the approximation can be improved by importance sampling.
Do Adversarially Robust ImageNet Models Transfer Better? Andrew Ilyas
Transfer learning is a widely-used paradigm in which models pre-trained on standard datasets can efficiently adapt to downstream tasks. Typically, better pretrained models yield better transfer results, suggesting that initial accuracy is a key aspect of transfer learning performance. In this work, we identify another such aspect: we find that adversarially robust models, while less accurate, often perform better than their standard-trained counterparts when used for transfer learning. Specifically, we focus on adversarially robust ImageNet classifiers, and show that they yield improved accuracy on a standard suite of downstream classification tasks.
A Appendix
A.1 Illustrative MDPs Several proofs in A.2 rely on constructing special MDPs to serve as examples or counterexamples. We reserve this section to describe these MDPs for later reference. A.1.1 Ring and false-ring MDPs We consider a simple n-state, 1 action "ring" MDP (Figure 6) denoted m Since |A| = 1 we omit actions from the reward and transition dynamics. For each ring MDP and function g we additionally construct a corresponding "false-ring" MDP (Figure 6) with the same state and actions spaces as m We now provide some basic results about pairs of ring and false-ring MDPs that we will use periodically in our proofs. First we note that, since ring and false-ring MDPs only have one action, we can write Π = {π} where π takes this action at all states.
Proper Value Equivalence
One of the main challenges in model-based reinforcement learning (RL) is to decide which aspects of the environment should be modeled. The value-equivalence (VE) principle proposes a simple answer to this question: a model should capture the aspects of the environment that are relevant for value-based planning. Technically, VE distinguishes models based on a set of policies and a set of functions: a model is said to be VE to the environment if the Bellman operators it induces for the policies yield the correct result when applied to the functions. As the number of policies and functions increase, the set of VE models shrinks, eventually collapsing to a single point corresponding to a perfect model. A fundamental question underlying the VE principle is thus how to select the smallest sets of policies and functions that are sufficient for planning.
Understanding Social Reasoning in Language Models with Language Models Kanishk Gandhi J.-Philipp Fränken
As Large Language Models (LLMs) become increasingly integrated into our everyday lives, understanding their ability to comprehend human mental states becomes critical for ensuring effective interactions. However, despite the recent attempts to assess the Theory-of-Mind (ToM) reasoning capabilities of LLMs, the degree to which these models can align with human ToM remains a nuanced topic of exploration. This is primarily due to two distinct challenges: (1) the presence of inconsistent results from previous evaluations, and (2) concerns surrounding the validity of existing evaluation methodologies. To address these challenges, we present a novel framework for procedurally generating evaluations with LLMs by populating causal templates. Using our framework, we create a new social reasoning benchmark (BigToM) for LLMs which consists of 25 controls and 5,000 model-written evaluations. We find that human participants rate the quality of our benchmark higher than previous crowd-sourced evaluations and comparable to expert-written evaluations. Using BigToM, we evaluate the social reasoning capabilities of a variety of LLMs and compare model performances with human performance. Our results suggest that GPT4 has ToM capabilities that mirror human inference patterns, though less reliable, while other LLMs struggle.
Matrix Multiplicative Weights Updates in Quantum Zero-Sum Games: Conservation Laws & Recurrence
Recent advances in quantum computing and in particular, the introduction of quantum GANs, have led to increased interest in quantum zero-sum game theory, extending the scope of learning algorithms for classical games into the quantum realm. In this paper, we focus on learning in quantum zero-sum games under Matrix Multiplicative Weights Update (a generalization of the multiplicative weights update method) and its continuous analogue, Quantum Replicator Dynamics. When each player selects their state according to quantum replicator dynamics, we show that the system exhibits conservation laws in a quantum-information theoretic sense. Moreover, we show that the system exhibits Poincaré recurrence, meaning that almost all orbits return arbitrarily close to their initial conditions infinitely often.