Not enough data to create a plot.
Try a different view from the menu above.
SAND: Smooth Imputation Of Sparse And Noisy Functional Data With Transformer Networks
Although the transformer architecture has come to dominate other models for text and image data, its application to irregularly-spaced longitudinal data has been limited. We introduce a variant of the transformer that enables it to more smoothly impute such functional data. We augment the vanilla transformer with a simple module we call SAND (self-attention on derivatives), which naturally encourages smoothness by modeling the sub-derivative of the imputed curve. On the theoretical front, we prove the number of hidden nodes required by a network with SAND to achieve an ฯต prediction error bound for functional imputation. Extensive experiments over various types of functional data demonstrate that transformers with SAND produce better imputations than both their standard counterparts as well as transformers augmented with alternative approaches to encode the inductive bias of smoothness. SAND also outperforms standard statistical methods for functional imputation like kernel smoothing and PACE.
Exploring the trade-off between deep-learning and explainable models for brain-machine interfaces Luis H. Cubillos 1, Matthew J. Mender 1, Joseph T. Costello
People with brain or spinal cord-related paralysis often need to rely on others for basic tasks, limiting their independence. A potential solution is brain-machine interfaces (BMIs), which could allow them to voluntarily control external devices (e.g., robotic arm) by decoding brain activity to movement commands. In the past decade, deep-learning decoders have achieved state-of-the-art results in most BMI applications, ranging from speech production to finger control. However, the'black-box' nature of deep-learning decoders could lead to unexpected behaviors, resulting in major safety concerns in real-world physical control scenarios. In these applications, explainable but lower-performing decoders, such as the Kalman filter (KF), remain the norm. In this study, we designed a BMI decoder based on Kalman-Net, an extension of the KF that augments its operation with recurrent neural networks to compute the Kalman gain.
NE: Surrogate-Assisted Federated Neighbor Embedding for Dimensionality Reduction
Federated learning (FL) has rapidly evolved as a promising paradigm that enables collaborative model training across distributed participants without exchanging their local data. Despite its broad applications in fields such as computer vision, graph learning, and natural language processing, the development of a data projection model that can be effectively used to visualize data in the context of FL is crucial yet remains heavily under-explored. Neighbor embedding (NE) is an essential technique for visualizing complex high-dimensional data, but collaboratively learning a joint NE model is difficult. The key challenge lies in the objective function, as effective visualization algorithms like NE require computing loss functions among pairs of data.
OpenAI releases impressive 4o image generator for free and paid users
Earlier this week, OpenAI released their "most advanced image generator yet" and made it available through ChatGPT using the GPT-4o model. ChatGPT previously relied on Dall-E to generate images. According to OpenAI, the improved 4o model is able to produce precise, accurate, and photorealistic results. They claim that it's also particularly good at rendering text, following instructions precisely, and even understanding the context of a chat. All of this includes the transformation of uploaded images or using uploaded images as visual inspiration.
Off-policy estimation with adaptively collected data: the power of online learning
We consider estimation of a linear functional of the treatment effect from adaptively collected data. This problem finds a variety of applications including off-policy evaluation in contextual bandits, and estimation of the average treatment effect in causal inference. While a certain class of augmented inverse propensity weighting (AIPW) estimators enjoys desirable asymptotic properties including the semiparametric efficiency, much less is known about their non-asymptotic theory with adaptively collected data. To fill in the gap, we first present generic upper bounds on the mean-squared error of the class of AIPW estimators that crucially depends on a sequentially weighted error between the treatment effect and its estimates. Motivated by this, we propose a general reduction scheme that allows one to produce a sequence of estimates for the treatment effect via online learning to minimize the sequentially weighted estimation error. To illustrate this, we provide three concrete instantiations in (1) the tabular case; (2) the case of linear function approximation; and (3) the case of general function approximation for the outcome model. We then provide a local minimax lower bound to show the instance-dependent optimality of the AIPW estimator using no-regret online learning algorithms.
Alleviating Distortion in Image Generation via Multi-Resolution Diffusion Models and Time-Dependent Layer Normalization
This paper presents innovative enhancements to diffusion models by integrating a novel multi-resolution network and time-dependent layer normalization. Diffusion models have gained prominence for their effectiveness in high-fidelity image generation. While conventional approaches rely on convolutional U-Net architectures, recent Transformer-based designs have demonstrated superior performance and scalability.