Plotting

Enhanced Bilevel Optimization via Bregman Distance Feihu Huang 1,2

Neural Information Processing Systems

Bilevel optimization has been recently used in many machine learning problems such as hyperparameter optimization, policy optimization, and meta learning. Although many bilevel optimization methods have been proposed, they still suffer from the high computational complexities and do not consider the more general bilevel problems with nonsmooth regularization. In the paper, thus, we propose a class of enhanced bilevel optimization methods with using Bregman distance to solve bilevel optimization problems, where the outer subproblem is nonconvex and possibly nonsmooth, and the inner subproblem is strongly convex. Specifically, we propose a bilevel optimization method based on Bregman distance (BiO-BreD) to solve deterministic bilevel problems, which achieves a lower computational complexity than the best known results. Meanwhile, we also propose a stochastic bilevel optimization method (SBiO-BreD) to solve stochastic bilevel problems based on stochastic approximated gradients and Bregman distance. Moreover, we further propose an accelerated version of SBiO-BreD method (ASBiO-BreD) using the variance-reduced technique, which can achieve a lower computational complexity than the best known computational complexities with respect to condition number ฮบ and target accuracy ฯต for finding an ฯต-stationary point. We conduct data hyper-cleaning task and hyper-representation learning task to demonstrate that our new algorithms outperform related bilevel optimization approaches.


Neglected Hessian component explains mysteries in sharpness regularization

Neural Information Processing Systems

Recent work has shown that methods that regularize second order information like SAM can improve generalization in deep learning. Seemingly similar methods like weight noise and gradient penalties often fail to provide such benefits. We investigate this inconsistency and reveal its connection to the the structure of the Hessian of the loss. Specifically, its decomposition into the positive semidefinite Gauss-Newton matrix and an indefinite matrix, which we call the Nonlinear Modeling Error (NME) matrix. Previous studies have largely overlooked the significance of the NME in their analysis for various reasons. However, we provide empirical and theoretical evidence that the NME is important to the performance of gradient penalties and explains their sensitivity to activation functions. We also provide evidence that the difference in regularization performance between gradient penalties and weight noise can be explained by the NME. Our findings emphasize the necessity of considering the NME in both experimental design and theoretical analysis for sharpness regularization.


Supplemental Material - Annotator: A Generic Active Learning Baseline for LiDAR Semantic Segmentation

Neural Information Processing Systems

It has 13 LiDAR point cloud sequences with 198,396 scans in total, where each scan has around 98,000 points on average. Precise point-wise annotations of 32 semantic classes are provided for fine-grained 3D scene understanding. It includes 12 LiDAR point cloud sequences (sequence 00 to 11) and has 19,840 point clouds for training following the authors' instructions [25]. The LiDAR point clouds are captured in Karlsruhe (Germany) by a 64-beam LiDAR sensor, with point-level annotations over 19 semantic classes. It includes 22 LiDAR point cloud sequences that are split into a train set (sequence 00 to 10, where 08 is used for validation) and a test set (sequence 11 to 21).



Energy-based Hopfield Boosting for Out-of-Distribution Detection Claus Hofmann 1 Simon Schmid 2 Daniel Klotz

Neural Information Processing Systems

Out-of-distribution (OOD) detection is critical when deploying machine learning models in the real world. Outlier exposure methods, which incorporate auxiliary outlier data in the training process, can drastically improve OOD detection performance compared to approaches without advanced training strategies. We introduce Hopfield Boosting, a boosting approach, which leverages modern Hopfield energy to sharpen the decision boundary between the in-distribution and OOD data. Hopfield Boosting encourages the model to focus on hard-to-distinguish auxiliary outlier examples that lie close to the decision boundary between in-distribution and auxiliary outlier data. Our method achieves a new state-of-the-art in OOD detection with outlier exposure, improving the FPR95 from 2.28 to 0.92 on CIFAR-10, from 11.76 to 7.94 on CIFAR-100, and from 50.74 to 36.60 on ImageNet-1K.


Using Noise to Infer Aspects of Simplicity Without Learning

Neural Information Processing Systems

Noise in data significantly influences decision-making in the data science process. In fact, it has been shown that noise in data generation processes leads practitioners to find simpler models. However, an open question still remains: what is the degree of model simplification we can expect under different noise levels? In this work, we address this question by investigating the relationship between the amount of noise and model simplicity across various hypothesis spaces, focusing on decision trees and linear models. We formally show that noise acts as an implicit regularizer for several different noise models. Furthermore, we prove that Rashomon sets (sets of near-optimal models) constructed with noisy data tend to contain simpler models than corresponding Rashomon sets with nonnoisy data. Additionally, we show that noise expands the set of "good" features and consequently enlarges the set of models that use at least one good feature. Our work offers theoretical guarantees and practical insights for practitioners and policymakers on whether simple-yet-accurate machine learning models are likely to exist, based on knowledge of noise levels in the data generation process.


7873_an_asymptotically_optimal_batc (1)

Neural Information Processing Systems

We study the K-armed dueling bandit problem, a variation of the traditional multiarmed bandit problem in which feedback is obtained in the form of pairwise comparisons. Previous learning algorithms have focused on the fully adaptive setting, where the algorithm can make updates after every comparison. The "batched" dueling bandit problem is motivated by large-scale applications like web search ranking and recommendation systems, where performing sequential updates may be infeasible. In this work, we ask: is there a solution using only a few adaptive rounds that matches the asymptotic regret bounds of the best sequential algorithms for K-armed dueling bandits? We answer this in the affirmative under the Condorcet condition, a standard setting of the K-armed dueling bandit problem.



Domain Adaptation meets Individual Fairness. And they get along.

Neural Information Processing Systems

Many instances of algorithmic bias are caused by distributional shifts. For example, machine learning (ML) models often perform worse on demographic groups that are underrepresented in the training data. In this paper, we leverage this connection between algorithmic fairness and distribution shifts to show that algorithmic fairness interventions can help ML models overcome distribution shifts, and that domain adaptation methods (for overcoming distribution shifts) can mitigate algorithmic biases. In particular, we show that (i) enforcing suitable notions of individual fairness (IF) can improve the out-of-distribution accuracy of ML models under the covariate shift assumption and that (ii) it is possible to adapt representation alignment methods for domain adaptation to enforce individual fairness. The former is unexpected because IF interventions were not developed with distribution shifts in mind. The latter is also unexpected because representation alignment is not a common approach in the individual fairness literature.