Not enough data to create a plot.
Try a different view from the menu above.
Long-Tailed Out-of-Distribution Detection via Normalized Outlier Distribution Adaptation
One key challenge in Out-of-Distribution (OOD) detection is the absence of groundtruth OOD samples during training. One principled approach to address this issue is to use samples from external datasets as outliers (i.e., pseudo OOD samples) to train OOD detectors. However, we find empirically that the outlier samples often present a distribution shift compared to the true OOD samples, especially in Long-Tailed Recognition (LTR) scenarios, where ID classes are heavily imbalanced, i.e., the true OOD samples exhibit very different probability distribution to the head and tailed ID classes from the outliers. In this work, we propose a novel approach, namely normalized outlier distribution adaptation (AdaptOD), to tackle this distribution shift problem. One of its key components is dynamic outlier distribution adaptation that effectively adapts a vanilla outlier distribution based on the outlier samples to the true OOD distribution by utilizing the OOD knowledge in the predicted OOD samples during inference. Further, to obtain a more reliable set of predicted OOD samples on long-tailed ID data, a novel dual-normalized energy loss is introduced in AdaptOD, which leverages class-and sample-wise normalized energy to enforce a more balanced prediction energy on imbalanced ID samples. This helps avoid bias toward the head samples and learn a substantially better vanilla outlier distribution than existing energy losses during training. It also eliminates the need of manually tuning the sensitive margin hyperparameters in energy losses.
RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees
Safeguarding intellectual property and preventing potential misuse of AI-generated images are of paramount importance. This paper introduces a robust and agile plug-and-play watermark detection framework, referred to as RAW. As a departure from existing encoder-decoder methods, which incorporate fixed binary codes as watermarks within latent representations, our approach introduces learnable watermarks directly into the original image data. Subsequently, we employ a classifier that is jointly trained with the watermark to detect the presence of the watermark. The proposed framework is compatible with various generative architectures and supports on-the-fly watermark injection after training. By incorporating state-ofthe-art smoothing techniques, we show that the framework also provides provable guarantees regarding the false positive rate for misclassifying a watermarked image, even in the presence of adversarial attacks targeting watermark removal. Experiments on a diverse range of images generated by state-of-the-art diffusion models demonstrate substantially improved watermark encoding speed and watermark detection performance, under adversarial attacks, while maintaining image quality. Our code is publicly available here.
Hierarchical Object-Aware Dual-Level Contrastive Learning for Domain Generalized Stereo Matching
Stereo matching algorithms that leverage end-to-end convolutional neural networks have recently demonstrated notable advancements in performance. However, a common issue is their susceptibility to domain shifts, hindering their ability in generalizing to diverse, unseen realistic domains. We argue that existing stereo matching networks overlook the importance of extracting semantically and structurally meaningful features. To address this gap, we propose an effective hierarchical object-aware dual-level contrastive learning (HODC) framework for domain generalized stereo matching. Our framework guides the model in extracting features that support semantically and structurally driven matching by segmenting objects at different scales and enhances correspondence between intra-and inter-scale regions from the left feature map to the right using dual-level contrastive loss. HODC can be integrated with existing stereo matching models in the training stage, requiring no modifications to the architecture. Remarkably, using only synthetic datasets for training, HODC achieves state-of-the-art generalization performance with various existing stereo matching network architectures, across multiple realistic datasets.
Transformers as Game Players: Provable In-context Game-playing Capabilities of Pre-trained Models
The in-context learning (ICL) capability of pre-trained models based on the transformer architecture has received growing interest in recent years. While theoretical understanding has been obtained for ICL in reinforcement learning (RL), the previous results are largely confined to the single-agent setting. This work proposes to further explore the in-context learning capabilities of pre-trained transformer models in competitive multi-agent games, i.e., in-context game-playing (ICGP). Focusing on the classical two-player zero-sum games, theoretical guarantees are provided to demonstrate that pre-trained transformers can provably learn to approximate Nash equilibrium in an in-context manner for both decentralized and centralized learning settings. As a key part of the proof, constructional results are established to demonstrate that the transformer architecture is sufficiently rich to realize celebrated multi-agent game-playing algorithms, in particular, decentralized V-learning and centralized VI-ULCB.
LLaMo: Large Language Model-based Molecular Graph Assistant
Large Language Models (LLMs) have demonstrated remarkable generalization and instruction-following capabilities with instruction tuning. The advancements in LLMs and instruction tuning have led to the development of Large Vision-Language Models (LVLMs). However, the competency of the LLMs and instruction tuning have been less explored in the molecular domain. Thus, we propose LLaMo: Large Language Model-based Molecular graph assistant, which is an end-toend trained large molecular graph language model. To bridge the discrepancy between the language and graph modalities, we present the multi-level graph projector that transforms graph representations into graph tokens by abstracting the output representations of each GNN layer and motif representations with the cross-attention mechanism. We also introduce machine-generated molecular graph instruction data to instruction-tune the large molecular graph-language model for general-purpose molecule and language understanding. Our extensive experiments demonstrate that LLaMo shows the best performance on diverse tasks, such as molecular description generation, property prediction, and IUPAC name prediction. The code of LLaMo is available at https://github.com/mlvlab/LLaMo.
Kissing to Find a Match: Efficient Low-Rank Permutation Representation
Permutation matrices play a key role in matching and assignment problems across the fields, especially in computer vision and robotics. However, memory for explicitly representing permutation matrices grows quadratically with the size of the problem, prohibiting large problem instances. In this work, we propose to tackle the curse of dimensionality of large permutation matrices by approximating them using low-rank matrix factorization, followed by a nonlinearity. To this end, we rely on the Kissing number theory to infer the minimal rank required for representing a permutation matrix of a given size, which is significantly smaller than the problem size. This leads to a drastic reduction in computation and memory costs, e.g., up to 3 orders of magnitude less memory for a problem of size n = 20000, represented using 8.4 10
A Label is Worth a Thousand Images in Dataset Distillation
Data quality is a crucial factor in the performance of machine learning models, a principle that dataset distillation methods exploit by compressing training datasets into much smaller counterparts that maintain similar downstream performance. Understanding how and why data distillation methods work is vital not only for improving these methods but also for revealing fundamental characteristics of "good" training data. However, a major challenge in achieving this goal is the observation that distillation approaches, which rely on sophisticated but mostly disparate methods to generate synthetic data, have little in common with each other. In this work, we highlight a largely overlooked aspect common to most of these methods: the use of soft (probabilistic) labels. Through a series of ablation experiments, we study the role of soft labels in depth. Our results reveal that the main factor explaining the performance of state-of-the-art distillation methods is not the specific techniques used to generate synthetic data but rather the use of soft labels. Furthermore, we demonstrate that not all soft labels are created equal; they must contain structured information to be beneficial. We also provide empirical scaling laws that characterize the effectiveness of soft labels as a function of images-per-class in the distilled dataset and establish an empirical Pareto frontier for data-efficient learning. Combined, our findings challenge conventional wisdom in dataset distillation, underscore the importance of soft labels in learning, and suggest new directions for improving distillation methods.
Enhanced Bilevel Optimization via Bregman Distance Feihu Huang 1,2
Bilevel optimization has been recently used in many machine learning problems such as hyperparameter optimization, policy optimization, and meta learning. Although many bilevel optimization methods have been proposed, they still suffer from the high computational complexities and do not consider the more general bilevel problems with nonsmooth regularization. In the paper, thus, we propose a class of enhanced bilevel optimization methods with using Bregman distance to solve bilevel optimization problems, where the outer subproblem is nonconvex and possibly nonsmooth, and the inner subproblem is strongly convex. Specifically, we propose a bilevel optimization method based on Bregman distance (BiO-BreD) to solve deterministic bilevel problems, which achieves a lower computational complexity than the best known results. Meanwhile, we also propose a stochastic bilevel optimization method (SBiO-BreD) to solve stochastic bilevel problems based on stochastic approximated gradients and Bregman distance. Moreover, we further propose an accelerated version of SBiO-BreD method (ASBiO-BreD) using the variance-reduced technique, which can achieve a lower computational complexity than the best known computational complexities with respect to condition number κ and target accuracy ϵ for finding an ϵ-stationary point. We conduct data hyper-cleaning task and hyper-representation learning task to demonstrate that our new algorithms outperform related bilevel optimization approaches.