Not enough data to create a plot.
Try a different view from the menu above.
Bayesian Domain Adaptation with Gaussian Mixture Domain-Indexing
Recent methods are proposed to improve performance of domain adaptation by inferring domain index under an adversarial variational bayesian framework, where domain index is unavailable. However, existing methods typically assume that the global domain indices are sampled from a vanilla gaussian prior, overlooking the inherent structures among different domains. To address this challenge, we propose a Bayesian Domain Adaptation with Gaussian Mixture Domain-Indexing(GMDI) algorithm. GMDI employs a Gaussian Mixture Model for domain indices, with the number of component distributions in the "domain-themes" space adaptively determined by a Chinese Restaurant Process. By dynamically adjusting the mixtures at the domain indices level, GMDI significantly improves domain adaptation performance. Our theoretical analysis demonstrates that GMDI achieves a more stringent evidence lower bound, closer to the log-likelihood. For classification, GMDI outperforms all approaches, and surpasses the state-of-the-art method, VDI, by up to 3.4%, reaching 99.3%. For regression, GMDI reduces MSE by up to 21% (from 3.160 to 2.493), achieving the lowest errors among all methods. Source code is publicly available from https://github.com/lingyf3/GMDI.
Test-Time Amendment with a Coarse Classifier for Fine-Grained Classification Kanishk Jain IIIT Hyderabad 2
We investigate the problem of reducing mistake severity for fine-grained classification. Fine-grained classification can be challenging, mainly due to the requirement of domain expertise for accurate annotation. However, humans are particularly adept at performing coarse classification as it requires relatively low levels of expertise. To this end, we present a novel approach for Post-Hoc Correction called Hierarchical Ensembles (HiE) that utilizes label hierarchy to improve the performance of fine-grained classification at test-time using the coarse-grained predictions. By only requiring the parents of leaf nodes, our method significantly reduces avg.
Amnesia as a Catalyst for Enhancing Black Box Pixel Attacks in Image Classification and Object Detection
It is well known that query-based attacks tend to have relatively higher success rates in adversarial black-box attacks. While research on black-box attacks is actively being conducted, relatively few studies have focused on pixel attacks that target only a limited number of pixels. In image classification, query-based pixel attacks often rely on patches, which heavily depend on randomness and neglect the fact that scattered pixels are more suitable for adversarial attacks. Moreover, to the best of our knowledge, query-based pixel attacks have not been explored in the field of object detection. To address these issues, we propose a novel pixel-based black-box attack called Remember and Forget Pixel Attack using Reinforcement Learning(RFPAR), consisting of two main components: the Remember and Forget processes.
Perceptual Kalman Filters: Online State Estimation under a Perfect Perceptual-Quality Constraint
Many practical settings call for the reconstruction of temporal signals from corrupted or missing data. Classic examples include decoding, tracking, signal enhancement and denoising. Since the reconstructed signals are ultimately viewed by humans, it is desirable to achieve reconstructions that are pleasing to human perception. Mathematically, perfect perceptual-quality is achieved when the distribution of restored signals is the same as that of natural signals, a requirement which has been heavily researched in static estimation settings (i.e. when a whole signal is processed at once). Here, we study the problem of optimal causal filtering under a perfect perceptual-quality constraint, which is a task of fundamentally different nature.