Plotting

Reconstructing perceived faces from brain activations with deep adversarial neural decoding

Neural Information Processing Systems

Here, we present a novel approach to solve the problem of reconstructing perceived stimuli from brain responses by combining probabilistic inference with deep learning. Our approach first inverts the linear transformation from latent features to brain responses with maximum a posteriori estimation and then inverts the nonlinear transformation from perceived stimuli to latent features with adversarial training of convolutional neural networks. We test our approach with a functional magnetic resonance imaging experiment and show that it can generate state-of-the-art reconstructions of perceived faces from brain activations.



Tensor Biclustering

Neural Information Processing Systems

Consider a dataset where data is collected on multiple features of multiple individuals over multiple times. This type of data can be represented as a three dimensional individual/feature/time tensor and has become increasingly prominent in various areas of science. The tensor biclustering problem computes a subset of individuals and a subset of features whose signal trajectories over time lie in a low-dimensional subspace, modeling similarity among the signal trajectories while allowing different scalings across different individuals or different features. We study the information-theoretic limit of this problem under a generative model. Moreover, we propose an efficient spectral algorithm to solve the tensor biclustering problem and analyze its achievability bound in an asymptotic regime. Finally, we show the efficiency of our proposed method in several synthetic and real datasets.


Submultiplicative Glivenko-Cantelli and Uniform Convergence of Revenues

Neural Information Processing Systems

In this work we derive a variant of the classic Glivenko-Cantelli Theorem, which asserts uniform convergence of the empirical Cumulative Distribution Function (CDF) to the CDF of the underlying distribution. Our variant allows for tighter convergence bounds for extreme values of the CDF. We apply our bound in the context of revenue learning, which is a well-studied problem in economics and algorithmic game theory. We derive sample-complexity bounds on the uniform convergence rate of the empirical revenues to the true revenues, assuming a bound on the kth moment of the valuations, for any (possibly fractional) k > 1. For uniform convergence in the limit, we give a complete characterization and a zero-one law: if the first moment of the valuations is finite, then uniform convergence almost surely occurs; conversely, if the first moment is infinite, then uniform convergence almost never occurs.



Beyond normality: Learning sparse probabilistic graphical models in the non-Gaussian setting

Neural Information Processing Systems

We present an algorithm to identify sparse dependence structure in continuous and non-Gaussian probability distributions, given a corresponding set of data. The conditional independence structure of an arbitrary distribution can be represented as an undirected graph (or Markov random field), but most algorithms for learning this structure are restricted to the discrete or Gaussian cases. Our new approach allows for more realistic and accurate descriptions of the distribution in question, and in turn better estimates of its sparse Markov structure. Sparsity in the graph is of interest as it can accelerate inference, improve sampling methods, and reveal important dependencies between variables. The algorithm relies on exploiting the connection between the sparsity of the graph and the sparsity of transport maps, which deterministically couple one probability measure to another.


Adaptive Batch Size for Safe Policy Gradients

Neural Information Processing Systems

Policy gradient methods are among the best Reinforcement Learning (RL) techniques to solve complex control problems. In real-world RL applications, it is common to have a good initial policy whose performance needs to be improved and it may not be acceptable to try bad policies during the learning process. Although several methods for choosing the step size exist, research paid less attention to determine the batch size, that is the number of samples used to estimate the gradient direction for each update of the policy parameters. In this paper, we propose a set of methods to jointly optimize the step and the batch sizes that guarantee (with high probability) to improve the policy performance after each update. Besides providing theoretical guarantees, we show numerical simulations to analyse the behaviour of our methods.


Trimmed Density Ratio Estimation

Neural Information Processing Systems

Density ratio estimation is a vital tool in both machine learning and statistical community. However, due to the unbounded nature of density ratio, the estimation procedure can be vulnerable to corrupted data points, which often pushes the estimated ratio toward infinity. In this paper, we present a robust estimator which automatically identifies and trims outliers. The proposed estimator has a convex formulation, and the global optimum can be obtained via subgradient descent. We analyze the parameter estimation error of this estimator under high-dimensional settings. Experiments are conducted to verify the effectiveness of the estimator.


Simple strategies for recovering inner products from coarsely quantized random projections

Neural Information Processing Systems

Random projections have been increasingly adopted for a diverse set of tasks in machine learning involving dimensionality reduction. One specific line of research on this topic has investigated the use of quantization subsequent to projection with the aim of additional data compression. Motivated by applications in nearest neighbor search and linear learning, we revisit the problem of recovering inner products (respectively cosine similarities) in such setting. We show that even under coarse scalar quantization with 3 to 5 bits per projection, the loss in accuracy tends to range from "negligible" to "moderate". One implication is that in most scenarios of practical interest, there is no need for a sophisticated recovery approach like maximum likelihood estimation as considered in previous work on the subject. What we propose herein also yields considerable improvements in terms of accuracy over the Hamming distance-based approach in Li et al. (ICML 2014) which is comparable in terms of simplicity.