Not enough data to create a plot.
Try a different view from the menu above.
Metric Space Magnitude for Evaluating the Diversity of Latent Representations
The magnitude of a metric space is a novel invariant that provides a measure of the'effective size' of a space across multiple scales, while also capturing numerous geometrical properties, such as curvature, density, or entropy. We develop a family of magnitude-based measures of the intrinsic diversity of latent representations, formalising a novel notion of dissimilarity between magnitude functions of finite metric spaces. Our measures are provably stable under perturbations of the data, can be efficiently calculated, and enable a rigorous multi-scale characterisation and comparison of latent representations. We show their utility and superior performance across different domains and tasks, including (i) the automated estimation of diversity, (ii) the detection of mode collapse, and (iii) the evaluation of generative models for text, image, and graph data.
Can Language Models Perform Robust Reasoning in Chain-of-thought Prompting with Noisy Rationales?
This paper investigates an under-explored challenge in large language models (LLMs): chain-of-thought prompting with noisy rationales, which include irrelevant or inaccurate reasoning thoughts within examples used for in-context learning. We construct NoRa dataset that is tailored to evaluate the robustness of reasoning in the presence of noisy rationales. Our findings on NoRa dataset reveal a prevalent vulnerability to such noise among current LLMs, with existing robust methods like self-correction and self-consistency showing limited efficacy. Notably, compared to prompting with clean rationales, GPT-3.5 drops by 1.4%-19.8% in accuracy with irrelevant thoughts and more drastically by 2.2%-40.4% with inaccurate thoughts. Addressing this challenge necessitates external supervision that should be accessible in practice. Here, we propose the method of contrastive denoising with noisy chain-of-thought (CD-CoT). It enhances LLMs' denoising-reasoning capabilities by contrasting noisy rationales with only one clean rationale, which can be the minimal requirement for denoising-purpose prompting. This method follows a principle of exploration and exploitation: (1) rephrasing and selecting rationales in the input space to achieve explicit denoising and (2) exploring diverse reasoning paths and voting on answers in the output space. Empirically, CD-CoT demonstrates an average improvement of 17.8% in accuracy over the base model and shows significantly stronger denoising capabilities than baseline methods.
Grid4D: 4D Decomposed Hash Encoding for High-Fidelity Dynamic Gaussian Splatting
Recently, Gaussian splatting has received more and more attention in the field of static scene rendering. Due to the low computational overhead and inherent flexibility of explicit representations, plane-based explicit methods are popular ways to predict deformations for Gaussian-based dynamic scene rendering models. However, plane-based methods rely on the inappropriate low-rank assumption and excessively decompose the space-time 4D encoding, resulting in overmuch feature overlap and unsatisfactory rendering quality. To tackle these problems, we propose Grid4D, a dynamic scene rendering model based on Gaussian splatting and employing a novel explicit encoding method for the 4D input through the hash encoding.
Nested Mini-Batch K-Means
James Newling, Franรงois Fleuret
A new algorithm is proposed which accelerates the mini-batch k-means algorithm of Sculley (2010) by using the distance bounding approach of Elkan (2003). We argue that, when incorporating distance bounds into a mini-batch algorithm, already used data should preferentially be reused. To this end we propose using nested mini-batches, whereby data in a mini-batch at iteration t is automatically reused at iteration t + 1. Using nested mini-batches presents two difficulties. The first is that unbalanced use of data can bias estimates, which we resolve by ensuring that each data sample contributes exactly once to centroids. The second is in choosing mini-batch sizes, which we address by balancing premature fine-tuning of centroids with redundancy induced slow-down. Experiments show that the resulting nmbatch algorithm is very effective, often arriving within 1% of the empirical minimum 100 earlier than the standard mini-batch algorithm.
Preference Learning of Latent Decision Utilities with a Human-like Model of Preferential Choice
Preference learning methods make use of models of human choice in order to infer the latent utilities that underlie human behavior. However, accurate modeling of human choice behavior is challenging due to a range of context effects that arise from how humans contrast and evaluate options. Cognitive science has proposed several models that capture these intricacies but, due to their intractable nature, work on preference learning has, in practice, had to rely on tractable but simplified variants of the well-known Bradley-Terry model. In this paper, we take one stateof-the-art intractable cognitive model and propose a tractable surrogate that is suitable for deployment in preference learning. We then introduce a mechanism for fitting the surrogate to human data and extend it to account for data that cannot be explained by the original cognitive model. We demonstrate on large-scale human data that this model produces significantly better inferences on static and actively elicited data than existing Bradley-Terry variants. We further show in simulation that when using this model for preference learning, we can significantly improve utility in a range of real-world tasks.
Estimating the Size of a Large Network and its Communities from a Random Sample
Lin Chen, Amin Karbasi, Forrest W. Crawford
Most real-world networks are too large to be measured or studied directly and there is substantial interest in estimating global network properties from smaller sub-samples. One of the most important global properties is the number of vertices/nodes in the network. Estimating the number of vertices in a large network is a major challenge in computer science, epidemiology, demography, and intelligence analysis. In this paper we consider a population random graph G = (V, E) from the stochastic block model (SBM) with K communities/blocks. A sample is obtained by randomly choosing a subset W V and letting G(W) be the induced subgraph in G of the vertices in W. In addition to G(W), we observe the total degree of each sampled vertex and its block membership.
Rethinking Optimal Transport in Offline Reinforcement Learning
We propose a novel algorithm for offline reinforcement learning using optimal transport. Typically, in offline reinforcement learning, the data is provided by various experts and some of them can be sub-optimal. To extract an efficient policy, it is necessary to stitch the best behaviors from the dataset. To address this problem, we rethink offline reinforcement learning as an optimal transport problem. And based on this, we present an algorithm that aims to find a policy that maps states to a partial distribution of the best expert actions for each given state. We evaluate the performance of our algorithm on continuous control problems from the D4RL suite and demonstrate improvements over existing methods.