Plotting

Self Organizing Neural Networks for the Identification Problem

Neural Information Processing Systems

This work introduces a new method called Self Organizing Neural Network (SONN) algorithm and demonstrates its use in a system identification task. The algorithm constructs the network, chooses the neuron functions, and adjusts the weights. It is compared to the Back-Propagation algorithm in the identification of the chaotic time series. The results shows that SONN constructs a simpler, more accurate model.


Spreading Activation over Distributed Microfeatures

Neural Information Processing Systems

One attยทempt at explaining human inferencing is that of spreading activat,ion, particularly in the st.ructured connectionist paradigm. This has resulted in t.he building of systems with semantically nameable nodes which perform inferencing by examining t.he pat,t.erns of activation spread.


Neural Architecture

Neural Information Processing Systems

Valentino Braitenberg Max Planck Institute Federal Republic of Germany While we are waiting for the ultimate biophysics of cell membranes and synapses to be completed, we may speculate on the shapes of neurons and on the patterns of their connections. Much of this will be significant whatever the outcome of future physiology. Take as an example the isotropy, anisotropy and periodicity of different kinds of neural networks. The very existence of these different types in different parts of the brain (or in different brains) defeats explanation in terms of embryology; the mechanisms of development are able to make one kind of network or another. The reasons for the difference must be in the functions they perform.


A Computationally Robust Anatomical Model for Retinal Directional Selectivity

Neural Information Processing Systems

We analyze a mathematical model for retinal directionally selective cells based on recent electrophysiological data, and show that its computation of motion direction is robust against noise and speed.


Further Explorations in Visually-Guided Reaching: Making MURPHY Smarter

Neural Information Processing Systems

Visual guidance of a multi-link arm through a cluttered workspace is known to be an extremely difficult computational problem. Classical approaches in the field of robotics have typically broken the problem into pieces of manageable size, including modules for direct and inverse kinematics and dynamics [7], along with a variety of highly complex algorithms for motion planning in the configuration space of a multi-link arm (e.g.


Adaptive Neural Networks Using MOS Charge Storage

Neural Information Processing Systems

However, to achieve the full power of a VLSI implementation of an adaptive algorithm, the learning operation must built into the circuit. We have fabricated and tested a circuit ideal for this purpose by connecting a pair of capacitors with a CCD like structure, allowing for variable size weight changes as well as a weight decay operation. A 2.51-' CMOS version achieves better than 10 bits of dynamic range in a 140/'





Self Organizing Neural Networks for the Identification Problem

Neural Information Processing Systems

This work introduces a new method called Self Organizing Neural Network (SONN) algorithm and demonstrates its use in a system identification task. The algorithm constructs the network, chooses the neuron functions, and adjusts the weights. It is compared to the Back-Propagation algorithm in the identification of the chaotic time series. The results shows that SONN constructs a simpler, more accurate model.