Not enough data to create a plot.
Try a different view from the menu above.
Grounded Answers for Multi-agent Decision-making Problem through Generative World Model
Recent progress in generative models has stimulated significant innovations in many fields, such as image generation and chatbots. Despite their success, these models often produce sketchy and misleading solutions for complex multi-agent decisionmaking problems because they miss the trial-and-error experience and reasoning as humans. To address this limitation, we explore a paradigm that integrates a language-guided simulator into the multi-agent reinforcement learning pipeline to enhance the generated answer. The simulator is a world model that separately learns dynamics and reward, where the dynamics model comprises an image tokenizer as well as a causal transformer to generate interaction transitions autoregressively, and the reward model is a bidirectional transformer learned by maximizing the likelihood of trajectories in the expert demonstrations under language guidance. Given an image of the current state and the task description, we use the world model to train the joint policy and produce the image sequence as the answer by running the converged policy on the dynamics model. The empirical results demonstrate that this framework can improve the answers for multi-agent decision-making problems by showing superior performance on the training and unseen tasks of the StarCraft Multi-Agent Challenge benchmark. In particular, it can generate consistent interaction sequences and explainable reward functions at interaction states, opening the path for training generative models of the future.
Kexuan Sun
While multi-modal large language models (MLLMs) have shown significant progress across popular visual reasoning benchmarks, whether they possess abstract visual reasoning abilities remains an open question. Similar to the Sudoku puzzles, abstract visual reasoning (AVR) problems require finding high-level patterns (e.g., repetition constraints on numbers) that control the input shapes (e.g., digits) in a specific task configuration (e.g., matrix). However, existing AVR benchmarks only consider a limited set of patterns (addition, conjunction), input shapes (rectangle, square), and task configurations (3 3 matrices). And they fail to capture all abstract reasoning patterns in human cognition necessary for addressing real-world tasks, such as geometric properties and object boundary understanding in realworld navigation. To evaluate MLLMs' AVR abilities systematically, we introduce MARVEL founded on the core knowledge system in human cognition, a multidimensional AVR benchmark with 770 puzzles composed of six core knowledge patterns, geometric and abstract shapes, and five different task configurations.
Pipeline Parallelism with Controllable Memory Penghui Qi, Min Lin
Pipeline parallelism has been widely explored, but most existing schedules lack a systematic methodology. In this paper, we propose a framework to decompose pipeline schedules as repeating a building block, and show that the lifespan of the building block decides the peak activation memory of the pipeline schedule. Guided by the observations, we find that almost all existing pipeline schedules, to the best of our knowledge, are memory inefficient. To address this, we introduce a family of memory efficient building blocks with controllable activation memory, which can reduce the peak activation memory to 1/2 of 1F1B without sacrificing efficiency, and even to 1/3 with comparable throughput. We can also achieve almost zero pipeline bubbles while maintaining the same activation memory as 1F1B. Our evaluations demonstrate that in pure pipeline parallelism settings, our methods outperform 1F1B by from 7% to 55% in terms of throughput. When employing a grid search over hybrid parallelism hyperparameters in practical scenarios, our methods demonstrate a 16% throughput improvement over the 1F1B baseline for large language models. The implementation is open-sourced at this url.
Optimal Algorithms for Non-Smooth Distributed Optimization in Networks
Kevin Scaman, Francis Bach, Sebastien Bubeck, Laurent Massouliรฉ, Yin Tat Lee
In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in O(1/ t), the structure of the communication network only impacts a second-order term in O(1/t), where t is time.
A Benchmark Suite for Evaluating Neural Mutual Information Estimators on Unstructured Datasets
Mutual Information (MI) is a fundamental metric for quantifying dependency between two random variables. When we can access only the samples, but not the underlying distribution functions, we can evaluate MI using sample-based estimators. Assessment of such MI estimators, however, has almost always relied on analytical datasets including Gaussian multivariates. Such datasets allow analytical calculations of the true MI values, but they are limited in that they do not reflect the complexities of real-world datasets. This study introduces a comprehensive benchmark suite for evaluating neural MI estimators on unstructured datasets, specifically focusing on images and texts. By leveraging same-class sampling for positive pairing and introducing a binary symmetric channel trick, we show that we can accurately manipulate true MI values of real-world datasets. Using the benchmark suite, we investigate seven challenging scenarios, shedding light on the reliability of neural MI estimators for unstructured datasets.
Goal Conditioned Reinforcement Learning for Photo Finishing Tuning
Photo finishing tuning aims to automate the manual tuning process of the photo finishing pipeline, like Adobe Lightroom or Darktable. Previous works either use zeroth-order optimization, which is slow when the set of parameters increases, or rely on a differentiable proxy of the target finishing pipeline, which is hard to train. To overcome these challenges, we propose a novel goal-conditioned reinforcement learning framework for efficiently tuning parameters using a goal image as a condition. Unlike previous approaches, our tuning framework does not rely on any proxy and treats the photo finishing pipeline as a black box. Utilizing a trained reinforcement learning policy, it can efficiently find the desired set of parameters within just 10 queries, while optimization-based approaches normally take 200 queries. Furthermore, our architecture utilizes a goal image to guide the iterative tuning of pipeline parameters, allowing for flexible conditioning on pixel-aligned target images, style images, or any other visually representable goals. We conduct detailed experiments on photo finishing tuning and photo stylization tuning tasks, demonstrating the advantages of our method.
Private Geometric Median Mahdi Haghifam Thomas Steinke Jonathan Ullman
Our main contribution is a pair of polynomial-time DP algorithms for the task of private GM with an excess error guarantee that scales with the effective diameter of the datapoints. Additionally, we propose an inefficient algorithm based on the inverse smooth sensitivity mechanism, which satisfies the more restrictive notion of pure DP. We complement our results with a lower bound and demonstrate the optimality of our polynomial-time algorithms in terms of sample complexity.
SparseLLM: Towards Global Pruning of Pre-trained Language Models 2 Chen Ling
The transformative impact of large language models (LLMs) like LLaMA and GPT on natural language processing is countered by their prohibitive computational demands. Pruning has emerged as a pivotal compression strategy, introducing sparsity to enhance both memory and computational efficiency. Yet, traditional global pruning is impractical for LLMs due to scalability issues, while local pruning, despite its efficiency, leads to suboptimal solutions. Addressing these challenges, we propose SparseLLM, a novel framework that redefines the global pruning process into manageable, coordinated subproblems, allowing for resource-efficient optimization with global optimality. SparseLLM's approach, which conceptualizes LLMs as a chain of modular functions and leverages auxiliary variables for problem decomposition, not only facilitates a pragmatic application on LLMs but also demonstrates significant performance improvements, particularly in high-sparsity regimes, surpassing current state-of-the-art methods.