Not enough data to create a plot.
Try a different view from the menu above.
Coupled Variational Bayes via Optimization Embedding
Variational inference plays a vital role in learning graphical models, especially on large-scale datasets. Much of its success depends on a proper choice of auxiliary distribution class for posterior approximation. However, how to pursue an auxiliary distribution class that achieves both good approximation ability and computation efficiency remains a core challenge. In this paper, we proposed coupled variational Bayes which exploits the primal-dual view of the ELBO with the variational distribution class generated by an optimization procedure, which is termed optimization embedding.
Training DNNs with Hybrid Block Floating Point
Mario Drumond, Tao LIN, Martin Jaggi, Babak Falsafi
The wide adoption of DNNs has given birth to unrelenting computing requirements, forcing datacenter operators to adopt domain-specific accelerators to train them. These accelerators typically employ densely packed full-precision floating-point arithmetic to maximize performance per area. Ongoing research efforts seek to further increase that performance density by replacing floating-point with fixedpoint arithmetic. However, a significant roadblock for these attempts has been fixed point's narrow dynamic range, which is insufficient for DNN training convergence. We identify block floating point (BFP) as a promising alternative representation since it exhibits wide dynamic range and enables the majority of DNN operations to be performed with fixed-point logic. Unfortunately, BFP alone introduces several limitations that preclude its direct applicability. In this work, we introduce HBFP, a hybrid BFP-FP approach, which performs all dot products in BFP and other operations in floating point. HBFP delivers the best of both worlds: the high accuracy of floating point at the superior hardware density of fixed point. For a wide variety of models, we show that HBFP matches floating point's accuracy while enabling hardware implementations that deliver up to 8.5 higher throughput.
Deep Network for the Integrated 3D Sensing of Multiple People in Natural Images
Andrei Zanfir, Elisabeta Marinoiu, Mihai Zanfir, Alin-Ionut Popa, Cristian Sminchisescu
We present MubyNet - a feed-forward, multitask, bottom up system for the integrated localization, as well as 3d pose and shape estimation, of multiple people in monocular images. The challenge is the formal modeling of the problem that intrinsically requires discrete and continuous computation, e.g.