Not enough data to create a plot.
Try a different view from the menu above.
Interpretable Nonlinear Dynamic Modeling of Neural Trajectories
A central challenge in neuroscience is understanding how neural system implements computation through its dynamics. We propose a nonlinear time series model aimed at characterizing interpretable dynamics from neural trajectories. Our model assumes low-dimensional continuous dynamics in a finite volume. It incorporates a prior assumption about globally contractional dynamics to avoid overly enthusiastic extrapolation outside of the support of observed trajectories. We show that our model can recover qualitative features of the phase portrait such as attractors, slow points, and bifurcations, while also producing reliable long-term future predictions in a variety of dynamical models and in real neural data.
Tensor Switching Networks
We present a novel neural network algorithm, the Tensor Switching (TS) network, which generalizes the Rectified Linear Unit (ReLU) nonlinearity to tensor-valued hidden units. The TS network copies its entire input vector to different locations in an expanded representation, with the location determined by its hidden unit activity. In this way, even a simple linear readout from the TS representation can implement a highly expressive deep-network-like function. The TS network hence avoids the vanishing gradient problem by construction, at the cost of larger representation size. We develop several methods to train the TS network, including equivalent kernels for infinitely wide and deep TS networks, a one-pass linear learning algorithm, and two backpropagation-inspired representation learning algorithms.
A Bayesian method for reducing bias in neural representational similarity analysis
In neuroscience, the similarity matrix of neural activity patterns in response to different sensory stimuli or under different cognitive states reflects the structure of neural representational space. Existing methods derive point estimations of neural activity patterns from noisy neural imaging data, and the similarity is calculated from these point estimations. We show that this approach translates structured noise from estimated patterns into spurious bias structure in the resulting similarity matrix, which is especially severe when signal-to-noise ratio is low and experimental conditions cannot be fully randomized in a cognitive task. We propose an alternative Bayesian framework for computing representational similarity in which we treat the covariance structure of neural activity patterns as a hyper-parameter in a generative model of the neural data, and directly estimate this covariance structure from imaging data while marginalizing over the unknown activity patterns. Converting the estimated covariance structure into a correlation matrix offers a much less biased estimate of neural representational similarity.
Improved Error Bounds for Tree Representations of Metric Spaces
Estimating optimal phylogenetic trees or hierarchical clustering trees from metric data is an important problem in evolutionary biology and data analysis. Intuitively, the goodness-of-fit of a metric space to a tree depends on its inherent treeness, as well as other metric properties such as intrinsic dimension. Existing algorithms for embedding metric spaces into tree metrics provide distortion bounds depending on cardinality. Because cardinality is a simple property of any set, we argue that such bounds do not fully capture the rich structure endowed by the metric. We consider an embedding of a metric space into a tree proposed by Gromov.
Learning HMMs with Nonparametric Emissions via Spectral Decompositions of Continuous Matrices
Recently, there has been a surge of interest in using spectral methods for estimating latent variable models. However, it is usually assumed that the distribution of the observations conditioned on the latent variables is either discrete or belongs to a parametric family. In this paper, we study the estimation of an m -state hidden Markov model (HMM) with only smoothness assumptions, such as H\"olderian conditions, on the emission densities. By leveraging some recent advances in continuous linear algebra and numerical analysis, we develop a computationally efficient spectral algorithm for learning nonparametric HMMs. Our technique is based on computing an SVD on nonparametric estimates of density functions by viewing them as \emph{continuous matrices}.
Efficient Nonparametric Smoothness Estimation
Sobolev quantities (norms, inner products, and distances) of probability density functions are important in the theory of nonparametric statistics, but have rarely been used in practice, partly due to a lack of practical estimators. They also include, as special cases, L 2 quantities which are used in many applications. We propose and analyze a family of estimators for Sobolev quantities of unknown probability density functions. We bound the finite-sample bias and variance of our estimators, finding that they are generally minimax rate-optimal. Our estimators are significantly more computationally tractable than previous estimators, and exhibit a statistical/computational trade-off allowing them to adapt to computational constraints.
Unsupervised Domain Adaptation with Residual Transfer Networks
The recent success of deep neural networks relies on massive amounts of labeled data. For a target task where labeled data is unavailable, domain adaptation can transfer a learner from a different source domain. In this paper, we propose a new approach to domain adaptation in deep networks that can jointly learn adaptive classifiers and transferable features from labeled data in the source domain and unlabeled data in the target domain. We relax a shared-classifier assumption made by previous methods and assume that the source classifier and target classifier differ by a residual function. We enable classifier adaptation by plugging several layers into deep network to explicitly learn the residual function with reference to the target classifier.
Learning What and Where to Draw
Generative Adversarial Networks (GANs) have recently demonstrated the capability to synthesize compelling real-world images, such as room interiors, album covers, manga, faces, birds, and flowers. While existing models can synthesize images based on global constraints such as a class label or caption, they do not provide control over pose or object location. We propose a new model, the Generative Adversarial What-Where Network (GAWWN), that synthesizes images given instructions describing what content to draw in which location. We show high-quality 128 128 image synthesis on the Caltech-UCSD Birds dataset, conditioned on both informal text descriptions and also object location. Our system exposes control over both the bounding box around the bird and its constituent parts.
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings
The blind application of machine learning runs the risk of amplifying biases present in data. Such a danger is facing us with word embedding, a popular framework to represent text data as vectors which has been used in many machine learning and natural language processing tasks. We show that even word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing extent. This raises concerns because their widespread use, as we describe, often tends to amplify these biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding.
Scalable Adaptive Stochastic Optimization Using Random Projections
Adaptive stochastic gradient methods such as AdaGrad have gained popularity in particular for training deep neural networks. The most commonly used and studied variant maintains a diagonal matrix approximation to second order information by accumulating past gradients which are used to tune the step size adaptively. In certain situations the full-matrix variant of AdaGrad is expected to attain better performance, however in high dimensions it is computationally impractical. We present Ada-LR and RadaGrad two computationally efficient approximations to full-matrix AdaGrad based on randomized dimensionality reduction. They are able to capture dependencies between features and achieve similar performance to full-matrix AdaGrad but at a much smaller computational cost.