Learning HMMs with Nonparametric Emissions via Spectral Decompositions of Continuous Matrices

Neural Information Processing Systems 

Recently, there has been a surge of interest in using spectral methods for estimating latent variable models. However, it is usually assumed that the distribution of the observations conditioned on the latent variables is either discrete or belongs to a parametric family. In this paper, we study the estimation of an m -state hidden Markov model (HMM) with only smoothness assumptions, such as H\"olderian conditions, on the emission densities. By leveraging some recent advances in continuous linear algebra and numerical analysis, we develop a computationally efficient spectral algorithm for learning nonparametric HMMs. Our technique is based on computing an SVD on nonparametric estimates of density functions by viewing them as \emph{continuous matrices}.