Well File:




Wormhole Loss for Partial Shape Matching Thomas Dagรจs

Neural Information Processing Systems

When matching parts of a surface to its whole, a fundamental question arises: Which points should be included in the matching process? The issue is intensified when using isometry to measure similarity, as it requires the validation of whether distances measured between pairs of surface points should influence the matching process. The approach we propose treats surfaces as manifolds equipped with geodesic distances, and addresses the partial shape matching challenge by introducing a novel criterion to meticulously search for consistent distances between pairs of points. The new criterion explores the relation between intrinsic geodesic distances between the points, geodesic distances between the points and surface boundaries, and extrinsic distances between boundary points measured in the embedding space. It is shown to be less restrictive compared to previous measures and achieves state-of-the-art results when used as a loss function in training networks for partial shape matching.




GREATS: Online Selection of High-Quality Data for LLM Training in Every Iteration

Neural Information Processing Systems

Online batch selection methods offer an adaptive alternative to static training data selection by dynamically selecting data batches during training. However, existing methods either rely on impractical reference models or simple heuristics that may not capture true data informativeness. To address these limitations, we propose GREedy Approximation Taylor Selection (GREATS), a principled and efficient online batch selection method that applies greedy algorithm to optimize the data batch quality approximated by Taylor expansion. We develop a series of techniques to scale GREATS to large-scale model training. Extensive experiments with large language models (LLMs) demonstrate that GREATS significantly improves training convergence speed and generalization performance.