Well File:

FedGMKD: An Efficient Prototype Federated Learning Framework through Knowledge Distillation and Discrepancy-Aware Aggregation

Neural Information Processing Systems

Federated Learning (FL) faces significant challenges due to data heterogeneity across distributed clients. To address this, we propose FedGMKD, a novel framework that combines knowledge distillation and differential aggregation for efficient prototype-based personalized FL without the need for public datasets or server-side generative models. FedGMKD introduces Cluster Knowledge Fusion, utilizing Gaussian Mixture Models to generate prototype features and soft predictions on the client side, enabling effective knowledge distillation while preserving data privacy. Additionally, we implement a Discrepancy-Aware Aggregation Technique that weights client contributions based on data quality and quantity, enhancing the global model's generalization across diverse client distributions. Theoretical analysis confirms the convergence of FedGMKD. Extensive experiments on benchmark datasets, including SVHN, CIFAR-10, and CIFAR-100, demonstrate that FedGMKD outperforms state-of-the-art methods, significantly improving both local and global accuracy in Non-IID data settings.


Treeffuser: Probabilistic Predictions via Conditional Diffusions with Gradient-Boosted Trees Nicolas Beltran-Velez 1 Alp Kucukelbir 1,4

Neural Information Processing Systems

Probabilistic prediction aims to compute predictive distributions rather than single point predictions. These distributions enable practitioners to quantify uncertainty, compute risk, and detect outliers. However, most probabilistic methods assume parametric responses, such as Gaussian or Poisson distributions. When these assumptions fail, such models lead to bad predictions and poorly calibrated uncertainty. In this paper, we propose Treeffuser, an easy-to-use method for probabilistic prediction on tabular data.


SLTrain: a sparse plus low-rank approach for parameter and memory efficient pretraining Wei Huang

Neural Information Processing Systems

Large language models (LLMs) have shown impressive capabilities across various tasks. However, training LLMs from scratch requires significant computational power and extensive memory capacity. Recent studies have explored low-rank structures on weights for efficient fine-tuning in terms of parameters and memory, either through low-rank adaptation or factorization. While effective for fine-tuning, low-rank structures are generally less suitable for pretraining because they restrict parameters to a low-dimensional subspace. In this work, we propose to parameterize the weights as a sum of low-rank and sparse matrices for pretraining, which we call SLTrain. The low-rank component is learned via matrix factorization, while for the sparse component, we employ a simple strategy of uniformly selecting the sparsity support at random and learning only the non-zero entries with the fixed support. While being simple, the random fixed-support sparse learning strategy significantly enhances pretraining when combined with low-rank learning. Our results show that SLTrain adds minimal extra parameters and memory costs compared to pretraining with low-rank parameterization, yet achieves substantially better performance, which is comparable to full-rank training. Remarkably, when combined with quantization and per-layer updates, SLTrain can reduce memory requirements by up to 73% when pretraining the LLaMA 7B model.


Neural Payoff Machines: Predicting Fair and Stable Payoff Allocations Among Team Members Daphne Cornelisse 1 Thomas Rood 1 Mateusz Malinowski

Neural Information Processing Systems

In many multi-agent settings, participants can form teams to achieve collective outcomes that may far surpass their individual capabilities. Measuring the relative contributions of agents and allocating them shares of the reward that promote long-lasting cooperation are difficult tasks. Cooperative game theory offers solution concepts identifying distribution schemes, such as the Shapley value, that fairly reflect the contribution of individuals to the performance of the team or the Core, which reduces the incentive of agents to abandon their team. Applications of such methods include identifying influential features and sharing the costs of joint ventures or team formation. Unfortunately, using these solutions requires tackling a computational barrier as they are hard to compute, even in restricted settings. In this work, we show how cooperative game-theoretic solutions can be distilled into a learned model by training neural networks to propose fair and stable payoff allocations. We show that our approach creates models that can generalize to games far from the training distribution and can predict solutions for more players than observed during training. An important application of our framework is Explainable AI: our approach can be used to speed-up Shapley value computations on many instances.


Large Language Model Unlearning via Embedding-Corrupted Prompts Yaxuan Wang Jeffrey Flanigan Yang Liu

Neural Information Processing Systems

Large language models (LLMs) have advanced to encompass extensive knowledge across diverse domains. Yet controlling what a large language model should not know is important for ensuring alignment and thus safe use. However, accurately and efficiently unlearning knowledge from an LLM remains challenging due to the potential collateral damage caused by the fuzzy boundary between retention and forgetting, and the large computational requirements for optimization across stateof-the-art models with hundreds of billions of parameters. In this work, we present Embedding-COrrupted (ECO) Prompts, a lightweight unlearning framework for large language models to address both the challenges of knowledge entanglement and unlearning efficiency. Instead of relying on the LLM itself to unlearn, we enforce an unlearned state during inference by employing a prompt classifier to identify and safeguard prompts to forget. We learn corruptions added to prompt embeddings via zeroth order optimization toward the unlearning objective offline and corrupt prompts flagged by the classifier during inference. We find that these embedding-corrupted prompts not only lead to desirable outputs that satisfy the unlearning objective but also closely approximate the output from a model that has never been trained on the data intended for forgetting. Through extensive experiments on unlearning, we demonstrate the superiority of our method in achieving promising unlearning at nearly zero side effects in general domains and domains closely related to the unlearned ones. Additionally, we highlight the scalability of our method to 100 LLMs, ranging from 0.5B to 236B parameters, incurring no additional cost as the number of parameters increases.


Exploring Embodied Emotion Through A Large-Scale Egocentric Video Dataset

Neural Information Processing Systems

A.1 Annotation Process Prior to conducting the annotation process, human annotators undergo a comprehensive training phase. During this phase, annotators are encouraged to raise any doubts and present corner cases to the first author, who revisits the guidelines with further details and examples. Following the training phase, a meeting is held between the first author, the last author, and the annotation manager to ensure a clear understanding of the task. The manager then evaluates the performance of annotators before collecting the final annotations. Throughout the annotation process, the annotation manager, the first author, and the last author maintain regular communication, reviewing samples and addressing any potential issues such as the exclusion of videos with problematic or offensive content.


Exploring Embodied Emotion Through A Large-Scale Egocentric Video Dataset

Neural Information Processing Systems

Understanding human emotions is fundamental to enhancing human-computer interaction, especially for embodied agents that mimic human behavior. Traditional emotion analysis often takes a third-person perspective, limiting the ability of agents to interact naturally and empathetically.



Deep Support Vectors

Neural Information Processing Systems

Deep learning has achieved tremendous success. However, unlike SVMs, which provide direct decision criteria and can be trained with a small dataset, it still has significant weaknesses due to its requirement for massive datasets during training and the black-box characteristics on decision criteria.


Latent Diffusion for Neural Spiking Data Auguste Schulz 1 * Julius Vetter 1 Felix Pei

Neural Information Processing Systems

Modern datasets in neuroscience enable unprecedented inquiries into the relationship between complex behaviors and the activity of many simultaneously recorded neurons. While latent variable models can successfully extract low-dimensional embeddings from such recordings, using them to generate realistic spiking data, especially in a behavior-dependent manner, still poses a challenge. Here, we present Latent Diffusion for Neural Spiking data (LDNS), a diffusion-based generative model with a low-dimensional latent space: LDNS employs an autoencoder with structured state-space (S4) layers to project discrete high-dimensional spiking data into continuous time-aligned latents. On these inferred latents, we train expressive (conditional) diffusion models, enabling us to sample neural activity with realistic single-neuron and population spiking statistics.