Well File:

Multilingual Text-to-Image Generation Magnifies Gender Stereotypes and Prompt Engineering May Not Help You

arXiv.org Artificial Intelligence

Text-to-image generation models have recently achieved astonishing results in image quality, flexibility, and text alignment and are consequently employed in a fast-growing number of applications. Through improvements in multilingual abilities, a larger community now has access to this kind of technology. Yet, as we will show, multilingual models suffer similarly from (gender) biases as monolingual models. Furthermore, the natural expectation is that these models will provide similar results across languages, but this is not the case and there are important differences between languages. Thus, we propose a novel benchmark MAGBIG intending to foster research in multilingual models without gender bias. We investigate whether multilingual T2I models magnify gender bias with MAGBIG. To this end, we use multilingual prompts requesting portrait images of persons of a certain occupation or trait (using adjectives). Our results show not only that models deviate from the normative assumption that each gender should be equally likely to be generated, but that there are also big differences across languages. Furthermore, we investigate prompt engineering strategies, i.e. the use of indirect, neutral formulations, as a possible remedy for these biases. Unfortunately, they help only to a limited extent and result in worse text-to-image alignment. Consequently, this work calls for more research into diverse representations across languages in image generators.


SERL: A Software Suite for Sample-Efficient Robotic Reinforcement Learning

arXiv.org Artificial Intelligence

In recent years, significant progress has been made in the field of robotic reinforcement learning (RL), enabling methods that handle complex image observations, train in the real world, and incorporate auxiliary data, such as demonstrations and prior experience. However, despite these advances, robotic RL remains hard to use. It is acknowledged among practitioners that the particular implementation details of these algorithms are often just as important (if not more so) for performance as the choice of algorithm. We posit that a significant challenge to widespread adoption of robotic RL, as well as further development of robotic RL methods, is the comparative inaccessibility of such methods. To address this challenge, we developed a carefully implemented library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment, a high-quality controller for a widely-adopted robot, and a number of challenging example tasks. We provide this library as a resource for the community, describe its design choices, and present experimental results. Perhaps surprisingly, we find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation between 25 to 50 minutes of training per policy on average, improving over state-of-the-art results reported for similar tasks in the literature. These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent recovery and correction behaviors. We hope that these promising results and our high-quality open-source implementation will provide a tool for the robotics community to facilitate further developments in robotic RL. Our code, documentation, and videos can be found at https://serl-robot.github.io/


Distillation Enhanced Time Series Forecasting Network with Momentum Contrastive Learning

arXiv.org Artificial Intelligence

Contrastive representation learning is crucial in time series analysis as it alleviates the issue of data noise and incompleteness as well as sparsity of supervision signal. However, existing constrastive learning frameworks usually focus on intral-temporal features, which fails to fully exploit the intricate nature of time series data. To address this issue, we propose DE-TSMCL, an innovative distillation enhanced framework for long sequence time series forecasting. Specifically, we design a learnable data augmentation mechanism which adaptively learns whether to mask a timestamp to obtain optimized sub-sequences. Then, we propose a contrastive learning task with momentum update to explore inter-sample and intra-temporal correlations of time series to learn the underlying structure feature on the unlabeled time series. Meanwhile, we design a supervised task to learn more robust representations and facilitate the contrastive learning process. Finally, we jointly optimize the above two tasks. By developing model loss from multiple tasks, we can learn effective representations for downstream forecasting task. Extensive experiments, in comparison with state-of-the-arts, well demonstrate the effectiveness of DE-TSMCL, where the maximum improvement can reach to 27.3%.


Convergence analysis of t-SNE as a gradient flow for point cloud on a manifold

arXiv.org Artificial Intelligence

We present a theoretical foundation regarding the boundedness of the t-SNE algorithm. t-SNE employs gradient descent iteration with Kullback-Leibler (KL) divergence as the objective function, aiming to identify a set of points that closely resemble the original data points in a high-dimensional space, minimizing KL divergence. Investigating t-SNE properties such as perplexity and affinity under a weak convergence assumption on the sampled dataset, we examine the behavior of points generated by t-SNE under continuous gradient flow. Demonstrating that points generated by t-SNE remain bounded, we leverage this insight to establish the existence of a minimizer for KL divergence.


PF-GNN: Differentiable particle filtering based approximation of universal graph representations

arXiv.org Artificial Intelligence

Message passing Graph Neural Networks (GNNs) are known to be limited in expressive power by the 1-WL color-refinement test for graph isomorphism. Other more expressive models either are computationally expensive or need preprocessing to extract structural features from the graph. In this work, we propose to make GNNs universal by guiding the learning process with exact isomorphism solver techniques which operate on the paradigm of Individualization and Refinement (IR), a method to artificially introduce asymmetry and further refine the coloring when 1-WL stops. Isomorphism solvers generate a search tree of colorings whose leaves uniquely identify the graph. However, the tree grows exponentially large and needs hand-crafted pruning techniques which are not desirable from a learning perspective. We take a probabilistic view and approximate the search tree of colorings (i.e. embeddings) by sampling multiple paths from root to leaves of the search tree. To learn more discriminative representations, we guide the sampling process with particle filter updates, a principled approach for sequential state estimation. Our algorithm is end-to-end differentiable, can be applied with any GNN as backbone and learns richer graph representations with only linear increase in runtime. Experimental evaluation shows that our approach consistently outperforms leading GNN models on both synthetic benchmarks for isomorphism detection as well as real-world datasets.


Predicting suicidal behavior among Indian adults using childhood trauma, mental health questionnaires and machine learning cascade ensembles

arXiv.org Artificial Intelligence

Among young adults, suicide is India's leading cause of death, accounting for an alarming national suicide rate of around 16%. In recent years, machine learning algorithms have emerged to predict suicidal behavior using various behavioral traits. But to date, the efficacy of machine learning algorithms in predicting suicidal behavior in the Indian context has not been explored in literature. In this study, different machine learning algorithms and ensembles were developed to predict suicide behavior based on childhood trauma, different mental health parameters, and other behavioral factors. The dataset was acquired from 391 individuals from a wellness center in India. Information regarding their childhood trauma, psychological wellness, and other mental health issues was acquired through standardized questionnaires. Results revealed that cascade ensemble learning methods using a support vector machine, decision trees, and random forest were able to classify suicidal behavior with an accuracy of 95.04% using data from childhood trauma and mental health questionnaires. The study highlights the potential of using these machine learning ensembles to identify individuals with suicidal tendencies so that targeted interinterventions could be provided efficiently.


Global-Liar: Factuality of LLMs over Time and Geographic Regions

arXiv.org Artificial Intelligence

The increasing reliance on AI-driven solutions, particularly Large Language Models (LLMs) like the GPT series, for information retrieval highlights the critical need for their factuality and fairness, especially amidst the rampant spread of misinformation and disinformation online. Our study evaluates the factual accuracy, stability, and biases in widely adopted GPT models, including GPT-3.5 and GPT-4, contributing to reliability and integrity of AI-mediated information dissemination. We introduce 'Global-Liar,' a dataset uniquely balanced in terms of geographic and temporal representation, facilitating a more nuanced evaluation of LLM biases. Our analysis reveals that newer iterations of GPT models do not always equate to improved performance. Notably, the GPT-4 version from March demonstrates higher factual accuracy than its subsequent June release. Furthermore, a concerning bias is observed, privileging statements from the Global North over the Global South, thus potentially exacerbating existing informational inequities. Regions such as Africa and the Middle East are at a disadvantage, with much lower factual accuracy. The performance fluctuations over time suggest that model updates may not consistently benefit all regions equally. Our study also offers insights into the impact of various LLM configuration settings, such as binary decision forcing, model re-runs and temperature, on model's factuality. Models constrained to binary (true/false) choices exhibit reduced factuality compared to those allowing an 'unclear' option. Single inference at a low temperature setting matches the reliability of majority voting across various configurations. The insights gained highlight the need for culturally diverse and geographically inclusive model training and evaluation. This approach is key to achieving global equity in technology, distributing AI benefits fairly worldwide.


Deterministic Computing Power Networking: Architecture, Technologies and Prospects

arXiv.org Artificial Intelligence

With the development of new Internet services such as computation-intensive and delay-sensitive tasks, the traditional "Best Effort" network transmission mode has been greatly challenged. The network system is urgently required to provide end-to-end transmission determinacy and computing determinacy for new applications to ensure the safe and efficient operation of services. Based on the research of the convergence of computing and networking, a new network paradigm named deterministic computing power networking (Det-CPN) is proposed. In this article, we firstly introduce the research advance of computing power networking. And then the motivations and scenarios of Det-CPN are analyzed. Following that, we present the system architecture, technological capabilities, workflow as well as key technologies for Det-CPN. Finally, the challenges and future trends of Det-CPN are analyzed and discussed.


Ada-Retrieval: An Adaptive Multi-Round Retrieval Paradigm for Sequential Recommendations

arXiv.org Artificial Intelligence

Retrieval models aim at selecting a small set of item candidates which match the preference of a given user. They play a vital role in large-scale recommender systems since subsequent models such as rankers highly depend on the quality of item candidates. However, most existing retrieval models employ a single-round inference paradigm, which may not adequately capture the dynamic nature of user preferences and stuck in one area in the item space. In this paper, we propose Ada-Retrieval, an adaptive multi-round retrieval paradigm for recommender systems that iteratively refines user representations to better capture potential candidates in the full item space. Ada-Retrieval comprises two key modules: the item representation adapter and the user representation adapter, designed to inject context information into items' and users' representations. The framework maintains a model-agnostic design, allowing seamless integration with various backbone models such as RNNs or Transformers. We perform experiments on three widely used public datasets, incorporating five powerful sequential recommenders as backbone models. Our results demonstrate that Ada-Retrieval significantly enhances the performance of various base models, with consistent improvements observed across different datasets. Our code and data are publicly available at: https://github.com/ll0ruc/Ada-Retrieval.


Making Sense of Knowledge Intensive Processes: an Oil & Gas Industry Scenario

arXiv.org Artificial Intelligence

Sensemaking is a constant and ongoing process by which people associate meaning to experiences. It can be an individual process, known as abduction, or a group process by which people give meaning to collective experiences. The sensemaking of a group is influenced by the abduction process of each person about the experience. Every collaborative process needs some level of sensemaking to show results. For a knowledge intensive process, sensemaking is central and related to most of its tasks. We present findings from a fieldwork executed in knowledge intensive process from the Oil and Gas industry. Our findings indicated that different types of knowledge can be combined to compose the result of a sensemaking process (e.g. decision, the need for more discussion, etc.). This paper presents an initial set of knowledge types that can be combined to compose the result of the sensemaking of a collaborative decision making process. We also discuss ideas for using systems powered by Artificial Intelligence to support sensemaking processes.