Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Statistically Meaningful Approximation: a Case Study on Approximating Turing Machines with Transformers
A common lens to theoretically study neural net architectures is to analyze the functions they can approximate. However, the constructions from approximation theory often have unrealistic aspects, for example, reliance on infinite precision to memorize target function values. To address this issue, we propose a formal definition of statistically meaningful approximation which requires the approximating network to exhibit good statistical learnability.
Statistically Meaningful Approximation: a Case Study on Approximating Turing Machines with Transformers
A common lens to theoretically study neural net architectures is to analyze the functions they can approximate. However, the constructions from approximation theory often have unrealistic aspects, for example, reliance on infinite precision to memorize target function values. To address this issue, we propose a formal definition of statistically meaningful approximation which requires the approximating network to exhibit good statistical learnability.
Era3D: High-Resolution Multiview Diffusion Using Efficient Row-wise Attention Xiaoxiao Long
In this paper, we introduce Era3D, a novel multiview diffusion method that generates high-resolution multiview images from a single-view image. Despite significant advancements in multiview generation, existing methods still suffer from camera prior mismatch, inefficacy, and low resolution, resulting in poor-quality multiview images. Specifically, these methods assume that the input images should comply with a predefined camera type, e.g. a perspective camera with a fixed focal length, leading to distorted shapes when the assumption fails. Moreover, the fullimage or dense multiview attention they employ leads to a dramatic explosion of computational complexity as image resolution increases, resulting in prohibitively expensive training costs. To bridge the gap between assumption and reality, Era3D first proposes a diffusion-based camera prediction module to estimate the focal length and elevation of the input image, which allows our method to generate images without shape distortions. Furthermore, a simple but efficient attention layer, named row-wise attention, is used to enforce epipolar priors in the multiview diffusion, facilitating efficient cross-view information fusion. Consequently, compared with state-of-the-art methods, Era3D generates high-quality multiview images with up to a 512 512 resolution while reducing computation complexity of multiview attention by 12x times. Comprehensive experiments demonstrate the superior generation power of Era3D-it can reconstruct high-quality and detailed 3D meshes from diverse single-view input images, significantly outperforming baseline multiview diffusion methods.
Multimodal Neural Script Knowledge Models
As humans, we understand events in the visual world contextually, performing multimodal reasoning across time to make inferences about the past, present, and future. We introduce MERLOT, a model that learns multimodal script knowledge by watching millions of YouTube videos with transcribed speech - in an entirely label-free, self-supervised manner. By pretraining with a mix of both framelevel (spatial) and video-level (temporal) objectives, our model not only learns to match images to temporally corresponding words, but also to contextualize what is happening globally over time. As a result, MERLOT exhibits strong out-of-the-box representations of temporal commonsense, and achieves state-ofthe-art performance on 12 different video QA datasets when finetuned. It also transfers well to the world of static images, allowing models to reason about the dynamic context behind visual scenes. On Visual Commonsense Reasoning, MERLOT answers questions correctly with 80.6% accuracy, outperforming stateof-the-art models of similar size by over 3%, even those that make heavy use of auxiliary supervised data (like object bounding boxes). Ablation analyses demonstrate the complementary importance of: 1) training on videos versus static images; 2) scaling the magnitude and diversity of the pretraining video corpus; and 3) using diverse objectives that encourage full-stack multimodal reasoning, from the recognition to cognition level.
A Supplementary Materials
A.1 Comparison with Existing Meta Learning-based Adversarial Attack Techniques Meta-Self [125] is a poisoning attack model for node classification by leveraging meta-learning to generate attacks, i.e., using meta-gradients to solve the bilevel optimization problem. It conducts adversarial attacks on global node classification of a single graph. It aims to solve a bilevel optimization problem: (1) training classification on graphs and (2) attacking graphs. It gradually improves attack performance by using meta learning to iteratively solve the above two problems. The GMA model utilizes meta learning to find good attack starting points in two graphs.
Sparse Modular Activation for Efficient Sequence Modeling Yang Liu 2 Shuohang Wang
Recent hybrid models combining Linear State Space Models (SSMs) with selfattention mechanisms have demonstrated impressive results across a range of sequence modeling tasks. However, current approaches apply attention modules statically and uniformly to all elements in the input sequences, leading to sub-optimal quality-efficiency trade-offs. To address this limitation, we introduce Sparse Modular Activation (SMA), a general mechanism enabling neural networks to sparsely and dynamically activate sub-modules for sequence elements in a differentiable manner. Through allowing each element to skip non-activated sub-modules, SMA reduces computation and memory consumption of neural networks at both training and inference stages. To validate the effectiveness of SMA on sequence modeling, we design a novel neural architecture, SeqBoat, which employs SMA to sparsely activate a Gated Attention Unit (GAU) based on the state representations learned from an SSM. By constraining the GAU to only conduct local attention on the activated inputs, SeqBoat can achieve linear inference complexity with theoretically infinite attention span, and provide substantially better qualityefficiency trade-off than the chunking-based models. With experiments on a wide range of tasks, including long sequence modeling, speech classification and language modeling, SeqBoat brings new state-of-the-art results among hybrid models with linear complexity, and reveals the amount of attention needed for each task through the learned sparse activation patterns. Our code is publicly available at https://github.com/renll/SeqBoat.