Technology
SMEM Algorithm for Mixture Models
Ueda, Naonori, Nakano, Ryohei, Ghahramani, Zoubin, Hinton, Geoffrey E.
We present a split and merge EM (SMEM) algorithm to overcome the local maximum problem in parameter estimation of finite mixture models. In the case of mixture models, non-global maxima often involve having too many components of a mixture model in one part of the space and too few in another, widely separated part of the space. To escape from such configurations we repeatedly perform simultaneous split and merge operations using a new criterion for efficiently selecting the split and merge candidates. We apply the proposed algorithm to the training of Gaussian mixtures and mixtures of factor analyzers using synthetic and real data and show the effectiveness of using the split and merge operations to improve the likelihood of both the training data and of held-out test data. 1 INTRODUCTION Mixture density models, in particular normal mixtures, have been extensively used in the field of statistical pattern recognition [1]. Recently, more sophisticated mixture density models such as mixtures of latent variable models (e.g., probabilistic PCA or factor analysis) have been proposed to approximate the underlying data manifold [2]-[4].
Using Analytic QP and Sparseness to Speed Training of Support Vector Machines
SVMs have empirically been shown to give good generalization performance on a wide variety of problems. However, the use of SVMs is stilI limited to a small group of researchers. One possible reason is that training algorithms for SVMs are slow, especially for large problems. Another explanation is that SVM training algorithms are complex, subtle, and sometimes difficult to implement. This paper describes a new SVM learning algorithm that is easy to implement, often faster, and has better scaling properties than the standard SVM training algorithm. The new SVM learning algorithm is called Sequential Minimal Optimization (or SMO).
Probabilistic Image Sensor Fusion
Sharma, Ravi K., Leen, Todd K., Pavel, Misha
We present a probabilistic method for fusion of images produced by multiple sensors. The approach is based on an image formation model in which the sensor images are noisy, locally linear functions of an underlying, true scene. A Bayesian framework then provides for maximum likelihood or maximum a posteriori estimates of the true scene from the sensor images. Maximum likelihood estimates of the parameters of the image formation model involve (local) second order image statistics, and thus are related to local principal component analysis. We demonstrate the efficacy of the method on images from visible-band and infrared sensors. 1 Introduction Advances in sensing devices have fueled the deployment of multiple sensors in several computational vision systems [1, for example]. Using multiple sensors can increase reliability with respect to single sensor systems.
Finite-Dimensional Approximation of Gaussian Processes
Ferrari-Trecate, Giancarlo, Williams, Christopher K. I., Opper, Manfred
Gaussian process (GP) prediction suffers from O(n3) scaling with the data set size n. By using a finite-dimensional basis to approximate the GP predictor, the computational complexity can be reduced. We derive optimal finite-dimensional predictors under a number of assumptions, and show the superiority of these predictors over the Projected Bayes Regression method (which is asymptotically optimal). We also show how to calculate the minimal model size for a given n. The calculations are backed up by numerical experiments.
Making Templates Rotationally Invariant. An Application to Rotated Digit Recognition
This paper describes a simple and efficient method to make template-based object classification invariant to in-plane rotations. The task is divided into two parts: orientation discrimination and classification. The key idea is to perform the orientation discrimination before the classification. This can be accomplished by hypothesizing, in turn, that the input image belongs to each class of interest. The image can then be rotated to maximize its similarity to the training images in each class (these contain the prototype object in an upright orientation). This process yields a set of images, at least one of which will have the object in an upright position. The resulting images can then be classified by models which have been trained with only upright examples. This approach has been successfully applied to two real-world vision-based tasks: rotated handwritten digit recognition and rotated face detection in cluttered scenes.
Learning from Dyadic Data
Hofmann, Thomas, Puzicha, Jan, Jordan, Michael I.
Dyadzc data refers to a domain with two finite sets of objects in which observations are made for dyads, i.e., pairs with one element from either set. This type of data arises naturally in many application ranging from computational linguistics and information retrieval to preference analysis and computer vision. In this paper, we present a systematic, domain-independent framework of learning from dyadic data by statistical mixture models. Our approach covers different models with fiat and hierarchical latent class structures. We propose an annealed version of the standard EM algorithm for model fitting which is empirically evaluated on a variety of data sets from different domains. 1 Introduction Over the past decade learning from data has become a highly active field of research distributed over many disciplines like pattern recognition, neural computation, statistics, machine learning, and data mining.
A Principle for Unsupervised Hierarchical Decomposition of Visual Scenes
Structure in a visual scene can be described at many levels of granularity. At a coarse level, the scene is composed of objects; at a finer level, each object is made up of parts, and the parts of subparts. In this work, I propose a simple principle by which such hierarchical structure can be extracted from visual scenes: Regularity in the relations among different parts of an object is weaker than in the internal structure of a part. This principle can be applied recursively to define part-whole relationships among elements in a scene. The principle does not make use of object models, categories, or other sorts of higher-level knowledge; rather, part-whole relationships can be established based on the statistics of a set of sample visual scenes. I illustrate with a model that performs unsupervised decomposition of simple scenes. The model can account for the results from a human learning experiment on the ontogeny of partwhole relationships.
An Integrated Vision Sensor for the Computation of Optical Flow Singular Points
Higgins, Charles M., Koch, Christof
A robust, integrative algorithm is presented for computing the position of the focus of expansion or axis of rotation (the singular point) in optical flow fields such as those generated by self-motion. Measurements are shown of a fully parallel CMOS analog VLSI motion sensor array which computes the direction of local motion (sign of optical flow) at each pixel and can directly implement this algorithm. The flow field singular point is computed in real time with a power consumption of less than 2 m W. Computation of the singular point for more general flow fields requires measures of field expansion and rotation, which it is shown can also be computed in real-time hardware, again using only the sign of the optical flow field. These measures, along with the location of the singular point, provide robust real-time self-motion information for the visual guidance of a moving platform such as a robot.
Reinforcement Learning for Trading
Moody, John E., Saffell, Matthew
In this paper, we propose to use recurrent reinforcement learning to directly optimize such trading system performance functions, and we compare two different reinforcement learning methods. The first, Recurrent Reinforcement Learning, uses immediate rewards to train the trading systems, while the second (Q-Learning (Watkins 1989)) approximates discounted future rewards. These methodologies can be applied to optimizing systems designed to trade a single security or to trade portfolios . In addition, we propose a novel value function for risk-adjusted return that enables learning to be done online: the differential Sharpe ratio. Trading system profits depend upon sequences of interdependent decisions, and are thus path-dependent. Optimal trading decisions when the effects of transactions costs, market impact and taxes are included require knowledge of the current system state. In Moody, Wu, Liao & Saffell (1998), we demonstrate that reinforcement learning provides a more elegant and effective means for training trading systems when transaction costs are included, than do more standard supervised approaches.