Information Technology
Further Experimental Evidence against the Utility of Occam's Razor
This paper presents new experimental evidence against the utility of Occam's razor. A~systematic procedure is presented for post-processing decision trees produced by C4.5. This procedure was derived by rejecting Occam's razor and instead attending to the assumption that similar objects are likely to belong to the same class. It increases a decision tree's complexity without altering the performance of that tree on the training data from which it is inferred. The resulting more complex decision trees are demonstrated to have, on average, for a variety of common learning tasks, higher predictive accuracy than the less complex original decision trees. This result raises considerable doubt about the utility of Occam's razor as it is commonly applied in modern machine learning.
A Principled Approach Towards Symbolic Geometric Constraint Satisfaction
Bhansali, S., Kramer, G. A., Hoar, T. J.
An important problem in geometric reasoning is to find the configuration of a collection of geometric bodies so as to satisfy a set of given constraints. Recently, it has been suggested that this problem can be solved efficiently by symbolically reasoning about geometry. This approach, called degrees of freedom analysis, employs a set of specialized routines called plan fragments that specify how to change the configuration of a set of bodies to satisfy a new constraint while preserving existing constraints. A potential drawback, which limits the scalability of this approach, is concerned with the difficulty of writing plan fragments. In this paper we address this limitation by showing how these plan fragments can be automatically synthesized using first principles about geometric bodies, actions, and topology.
Reinforcement Learning: A Survey
Kaelbling, L. P., Littman, M. L., Moore, A. W.
This paper surveys the field of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but differs considerably in the details and in the use of the word ``reinforcement.'' The paper discusses central issues of reinforcement learning, including trading off exploration and exploitation, establishing the foundations of the field via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.
Adaptive Problem-solving for Large-scale Scheduling Problems: A Case Study
Although most scheduling problems are NP-hard, domain specific techniques perform well in practice but are quite expensive to construct. In adaptive problem-solving solving, domain specific knowledge is acquired automatically for a general problem solver with a flexible control architecture. In this approach, a learning system explores a space of possible heuristic methods for one well-suited to the eccentricities of the given domain and problem distribution. In this article, we discuss an application of the approach to scheduling satellite communications. Using problem distributions based on actual mission requirements, our approach identifies strategies that not only decrease the amount of CPU time required to produce schedules, but also increase the percentage of problems that are solvable within computational resource limitations.
Planning for Contingencies: A Decision-based Approach
A fundamental assumption made by classical AI planners is that there is no uncertainty in the world: the planner has full knowledge of the conditions under which the plan will be executed and the outcome of every action is fully predictable. These planners cannot therefore construct contingency plans, i.e., plans in which different actions are performed in different circumstances. In this paper we discuss some issues that arise in the representation and construction of contingency plans and describe Cassandra, a partial-order contingency planner. Cassandra uses explicit decision-steps that enable the agent executing the plan to decide which plan branch to follow. The decision-steps in a plan result in subgoals to acquire knowledge, which are planned for in the same way as any other subgoals. Cassandra thus distinguishes the process of gathering information from the process of making decisions. The explicit representation of decisions in Cassandra allows a coherent approach to the problems of contingent planning, and provides a solid base for extensions such as the use of different decision-making procedures.
Least Generalizations and Greatest Specializations of Sets of Clauses
The main operations in Inductive Logic Programming (ILP) are generalization and specialization, which only make sense in a generality order. In ILP, the three most important generality orders are subsumption, implication and implication relative to background knowledge. The two languages used most often are languages of clauses and languages of only Horn clauses. This gives a total of six different ordered languages. In this paper, we give a systematic treatment of the existence or non-existence of least generalizations and greatest specializations of finite sets of clauses in each of these six ordered sets. We survey results already obtained by others and also contribute some answers of our own. Our main new results are, firstly, the existence of a computable least generalization under implication of every finite set of clauses containing at least one non-tautologous function-free clause (among other, not necessarily function-free clauses). Secondly, we show that such a least generalization need not exist under relative implication, not even if both the set that is to be generalized and the background knowledge are function-free. Thirdly, we give a complete discussion of existence and non-existence of greatest specializations in each of the six ordered languages.
Iterative Optimization and Simplification of Hierarchical Clusterings
Clustering is often used for discovering structure in data. Clustering systems differ in the objective function used to evaluate clustering quality and the control strategy used to search the space of clusterings. Ideally, the search strategy should consistently construct clusterings of high quality, but be computationally inexpensive as well. In general, we cannot have it both ways, but we can partition the search so that a system inexpensively constructs a `tentative' clustering for initial examination, followed by iterative optimization, which continues to search in background for improved clusterings. Given this motivation, we evaluate an inexpensive strategy for creating initial clusterings, coupled with several control strategies for iterative optimization, each of which repeatedly modifies an initial clustering in search of a better one. One of these methods appears novel as an iterative optimization strategy in clustering contexts. Once a clustering has been constructed it is judged by analysts -- often according to task-specific criteria. Several authors have abstracted these criteria and posited a generic performance task akin to pattern completion, where the error rate over completed patterns is used to `externally' judge clustering utility. Given this performance task, we adapt resampling-based pruning strategies used by supervised learning systems to the task of simplifying hierarchical clusterings, thus promising to ease post-clustering analysis. Finally, we propose a number of objective functions, based on attribute-selection measures for decision-tree induction, that might perform well on the error rate and simplicity dimensions.
A Divergence Critic for Inductive Proof
Inductive theorem provers often diverge. This paper describes a simple critic, a computer program which monitors the construction of inductive proofs attempting to identify diverging proof attempts. Divergence is recognized by means of a ``difference matching'' procedure. The critic then proposes lemmas and generalizations which ``ripple'' these differences away so that the proof can go through without divergence. The critic enables the theorem prover Spike to prove many theorems completely automatically from the definitions alone.
Practical Methods for Proving Termination of General Logic Programs
Termination of logic programs with negated body atoms (here called general logic programs) is an important topic. One reason is that many computational mechanisms used to process negated atoms, like Clark's negation as failure and Chan's constructive negation, are based on termination conditions. This paper introduces a methodology for proving termination of general logic programs w.r.t. the Prolog selection rule. The idea is to distinguish parts of the program depending on whether or not their termination depends on the selection rule. To this end, the notions of low-, weakly up-, and up-acceptable program are introduced. We use these notions to develop a methodology for proving termination of general logic programs, and show how interesting problems in non-monotonic reasoning can be formalized and implemented by means of terminating general logic programs.