Information Technology
Towards an Organizing Principle for a Layered Perceptual Network
This principle of "maximum information preservation" states that the signal transformation that is to be realized at each stage is one that maximizes the information that the output signal values (from that stage) convey about the input signals values (to that stage), subject to certain constraints and in the presence of processing noise. The quantity being maximized is a Shannon information rate. I provide motivation for this principle and -- for some simple model cases -- derive some of its consequences, discuss an algorithmic implementation, and show how the principle may lead to biologically relevant neural architectural features such as topographic maps, map distortions, orientation selectivity, and extraction of spatial and temporal signal correlations. A possible connection between this information-theoretic principle and a principle of minimum entropy production in nonequilibrium thermodynamics is suggested. Introduction This paper describes some properties of a proposed information-theoretic organizing principle for the development of a layered perceptual network. The purpose of this paper is to provide an intuitive and qualitative understanding of how the principle leads to specific feature-analyzing properties and signal transformations in some simple model cases. More detailed analysis is required in order to apply the principle to cases involving more realistic patterns of signaling activity as well as specific constraints on network connectivity. This section gives a brief summary of the results that motivated the formulation of the organizing principle, which I call the principle of "maximum information preservation." In later sections the principle is stated and its consequences studied.
A Computer Simulation of Cerebral Neocortex: Computational Capabilities of Nonlinear Neural Networks
Singer, Alexander, Donoghue, John P.
American Institute of Physics 1988 716 Asynthetic neural network simulation of cerebral neocortex was developed based on detailed anatomy and physiology. Processing elements possess temporal nonlinearities and connection patterns similar to those of cortical neurons. The network was able to replicate spatial and temporal integration properties found experimentally in neocortex. A certain level of randomness was found to be crucial for the robustness of at least some of the network's computational capabilities. Emphasis was placed on how synthetic simulations can be of use to the study of both artificial and biological neural networks.
The Connectivity Analysis of Simple Association
The Connectivity Analysis of Simple Association - or-How Many Connections Do You Need! Oregon Graduate Center, Beaverton, OR 97006 ABSTRACT The efficient realization, using current silicon technology, of Very Large Connection Networks (VLCN) with more than a billion connections requires that these networks exhibit a high degree of communication locality. Real neural networks exhibit significant locality, yet most connectionist/neural network models have little. In this paper, the connectivity requirements of a simple associative network are analyzed using communication theory. Several techniques based on communication theory are presented that improve the robustness of the network in the face of sparse, local interconnect structures. Also discussed are some potential problems when information is distributed too widely. INTRODUCTION Connectionist/neural network researchers are learning to program networks that exhibit a broad range of cognitive behavior.
The Connectivity Analysis of Simple Association
The Connectivity Analysis of Simple Association - or-How Many Connections Do You Need! Oregon Graduate Center, Beaverton, OR 97006 ABSTRACT The efficient realization, using current silicon technology, of Very Large Connection Networks (VLCN) with more than a billion connections requires that these networks exhibit a high degree of communication locality. Real neural networks exhibit significant locality, yet most connectionist/neural network models have little. In this paper, the connectivity requirements of a simple associative network are analyzed using communication theory. Several techniques based on communication theory are presented that improve the robustness of the network in the face of sparse, local interconnect structures. Also discussed are some potential problems when information is distributed too widely. INTRODUCTION Connectionist/neural network researchers are learning to program networks that exhibit a broad range of cognitive behavior.
A NEURAL NETWORK CLASSIFIER BASED ON CODING THEORY
Chiueh, Tzi-Dar, Goodman, Rodney
An input vector in the feature space is transformed into an internal representation which is a codeword in the code space, and then error correction decoded in this space to classify the input feature vector to its class. Two classes of codes which give high performance are the Hadamard matrix code and the maximal length sequence code. We show that the number of classes stored in an N-neuron system is linear in N and significantly more than that obtainable by using the Hopfield type memory as a classifier. I. INTRODUCTION Associative recall using neural networks has recently received a great deal of attention. Hopfield in his papers [1,2) deSCribes a mechanism which iterates through a feedback loop and stabilizes at the memory element that is nearest the input, provided that not many memory vectors are stored in the machine. He has also shown that the number of memories that can be stored in an N-neuron system is about O.15N for N between 30 and 100. McEliece et al. in their work (3) showed that for synchronous operation of the Hopfield memory about N /(2IogN) data vectors can be stored reliably when N is large. Abu-Mostafa (4) has predicted that the upper bound for the number of data vectors in an N-neuron Hopfield machine is N. We believe that one should be able to devise a machine with M, the number of data vectors, linear in N and larger than the O.15N achieved by the Hopfield method.
Time-Sequential Self-Organization of Hierarchical Neural Networks
Silverman, Ronald H., Noetzel, Andrew S.
TIME-SEQUENTIAL SELF-ORGANIZATION OF HIERARCHICAL NEURAL NETWORKS Ronald H. Silverman Cornell University Medical College, New York, NY 10021 Andrew S. Noetzel polytechnic University, Brooklyn, NY 11201 ABSTRACT Self-organization of multi-layered networks can be realized by time-sequential organization of successive neural layers. Lateral inhibition operating in the surround of firing cells in each layer provides for unsupervised capture of excitation patterns presented by the previous layer. By presenting patterns of increasing complexity, in coordination with network selforganization, higher levels of the hierarchy capture concepts implicit in the pattern set. INTRODUCTION A fundamental difficulty in self-organization of hierarchical, multi-layered, networks of simple neuron-like cells is the determination of the direction of adjustment of synaptic link weights between neural layers not directly connected to input or output patterns. Several different approaches have been used to address this problem.
HIGH DENSITY ASSOCIATIVE MEMORIES
A"'ir Dembo Information Systems Laboratory, Stanford University Stanford, CA 94305 Ofer Zeitouni Laboratory for Information and Decision Systems MIT, Cambridge, MA 02139 ABSTRACT A class of high dens ity assoc iat ive memories is constructed, starting from a description of desired properties those should exhib it. These propert ies include high capac ity, controllable bas ins of attraction and fast speed of convergence. Fortunately enough, the resulting memory is implementable by an artificial Neural Net. I NfRODUCTION Most of the work on assoc iat ive memories has been structure oriented, i.e.. given a Neural architecture, efforts were directed towards the analysis of the resulting network. Issues like capacity, basins of attractions, etc. were the main objects to be analyzed cf., e.g.
An Optimization Network for Matrix Inversion
Jang, Ju-Seog, Lee, Soo-Young, Shin, Sang-Yung
Box 150, Cheongryang, Seoul, Korea ABSTRACT Inverse matrix calculation can be considered as an optimization. We have demonstrated that this problem can be rapidly solved by highly interconnected simple neuron-like analog processors. A network for matrix inversion based on the concept of Hopfield's neural network was designed, and implemented with electronic hardware. With slight modifications, the network is readily applicable to solving a linear simultaneous equation efficiently. Notable features of this circuit are potential speed due to parallel processing, and robustness against variations of device parameters.
On Tropistic Processing and Its Applications
ON TROPISTIC PROCESSING AND ITS APPLICATIONS Manuel F. Fernandez General Electric Advanced Technology Laboratories Syracuse, New York 13221 ABSTRACT The interaction of a set of tropisms is sufficient in many cases to explain the seemingly complex behavioral responses exhibited by varied classes of biological systems to combinations of stimuli. It can be shown that a straightforward generalization of the tropism phenomenon allows the efficient implementation of effective algorithms which appear to respond "intelligently" to changing environmental conditions. Examples of the utilization of tropistic processing techniques will be presented in this paper in applications entailing simulated behavior synthesis, path-planning, pattern analysis (clustering), and engineering design optimization. INTRODUCTION The goal of this paper is to present an intuitive overview of a general unsupervised procedure for addressing a variety of system control and cost minimization problems. This procedure is hased on the idea of utilizing "stimuli" produced by the environment in which the systems are designed to operate as basis for dynamically providing the necessary system parameter updates.
Strategies for Teaching Layered Networks Classification Tasks
Wittner, Ben S., Denker, John S.
There is a widespread misconception that the delta-rule is in some sense guaranteed to work on networks without hidden units. As previous authors have mentioned, there is no such guarantee for classification tasks. We will begin by presenting explicit counterexamples illustrating two different interesting ways in which the delta rule can fail. We go on to provide conditions which do guarantee that gradient descent will successfully train networks without hidden units to perform two-category classification tasks. We discuss the generalization of our ideas to networks with hidden units and to multicategory classification tasks.