Information Technology
Continuous Sigmoidal Belief Networks Trained using Slice Sampling
These include Boltzmann machines (Hinton and Sejnowski 1986), binary sigmoidal belief networks (Neal 1992) and Helmholtz machines (Hinton et al. 1995; Dayan et al. 1995). However, some hidden variables, such as translation or scaling in images of shapes, are best represented using continuous values. Continuous-valued Boltzmann machines have been developed (Movellan and McClelland 1993), but these suffer from long simulation settling times and the requirement of a "negative phase" during learning. Tibshirani (1992) and Bishop et al. (1996) consider learning mappings from a continuous latent variable space to a higher-dimensional input space. MacKay (1995) has developed "density networks" that can model both continuous and categorical latent spaces using stochasticity at the topmost network layer. In this paper I consider a new hierarchical top-down connectionist model that has stochastic hidden variables at all layers; moreover, these variables can adapt to be continuous or categorical. The proposed top-down model can be viewed as a continuous-valued belief network, which can be simulated by performing a quick top-down pass (Pearl 1988).
A Constructive Learning Algorithm for Discriminant Tangent Models
Sona, Diego, Sperduti, Alessandro, Starita, Antonina
To reduce the computational complexity of classification systems using tangent distance, Hastie et al. (HSS) developed an algorithm to devise rich models for representing large subsets of the data which computes automatically the "best" associated tangent subspace. Schwenk & Milgram proposed a discriminant modular classification system (Diabolo) based on several autoassociative multilayer perceptrons which use tangent distance as error reconstruction measure. We propose a gradient based constructive learning algorithm for building a tangent subspace model with discriminant capabilities which combines several of the the advantages of both HSS and Diabolo: devised tangent models hold discriminant capabilities, space requirements are improved with respect to HSS since our algorithm is discriminant and thus it needs fewer prototype models, dimension of the tangent subspace is determined automatically by the constructive algorithm, and our algorithm is able to learn new transformations.
Rapid Visual Processing using Spike Asynchrony
Thorpe, Simon J., Gautrais, Jacques
We have investigated the possibility that rapid processing in the visual system could be achieved by using the order of firing in different neurones as a code, rather than more conventional firing rate schemes. Using SPIKENET, a neural net simulator based on integrate-and-fire neurones and in which neurones in the input layer function as analogto-delay converters, we have modeled the initial stages of visual processing. Initial results are extremely promising. Even with activity in retinal output cells limited to one spike per neuron per image (effectively ruling out any form of rate coding), sophisticated processing based on asynchronous activation was nonetheless possible.
The Neurothermostat: Predictive Optimal Control of Residential Heating Systems
Mozer, Michael C., Vidmar, Lucky, Dodier, Robert H.
The Neurothermostat is an adaptive controller that regulates indoor air temperature in a residence by switching a furnace on or off. The task is framed as an optimal control problem in which both comfort and energy costs are considered as part of the control objective. Because the consequences of control decisions are delayed in time, the N eurothermostat must anticipate heating demands with predictive models of occupancy patterns and the thermal response of the house and furnace. Occupancy pattern prediction is achieved by a hybrid neural net / lookup table. The Neurothermostat searches, at each discrete time step, for a decision sequence that minimizes the expected cost over a fixed planning horizon.
A New Approach to Hybrid HMM/ANN Speech Recognition using Mutual Information Neural Networks
Rigoll, Gerhard, Neukirchen, Christoph
This paper presents a new approach to speech recognition with hybrid HMM/ANN technology. While the standard approach to hybrid HMMI ANN systems is based on the use of neural networks as posterior probability estimators, the new approach is based on the use of mutual information neural networks trained with a special learning algorithm in order to maximize the mutual information between the input classes of the network and its resulting sequence of firing output neurons during training. It is shown in this paper that such a neural network is an optimal neural vector quantizer for a discrete hidden Markov model system trained on Maximum Likelihood principles. One of the main advantages of this approach is the fact, that such neural networks can be easily combined with HMM's of any complexity with context-dependent capabilities. It is shown that the resulting hybrid system achieves very high recognition rates, which are now already on the same level as the best conventional HMM systems with continuous parameters, and the capabilities of the mutual information neural networks are not yet entirely exploited.
A Neural Model of Visual Contour Integration
Sometimes local features group into regions, as in texture segmentation; at other times they group into contours which may represent object boundaries. Although much is known about the processing steps that extract local features such as oriented input edges, it is still unclear how local features are grouped into global ones more meaningful for objects.
Visual Cortex Circuitry and Orientation Tuning
Mundel, Trevor, Dimitrov, Alexander, Cowan, Jack D.
A simple mathematical model for the large-scale circuitry of primary visual cortex is introduced. It is shown that a basic cortical architecture of recurrent local excitation and lateral inhibition can account quantitatively for such properties as orientation tuning. The model can also account for such local effects as cross-orientation suppression. It is also shown that nonlocal state-dependent coupling between similar orientation patches, when added to the model, can satisfactorily reproduce such effects as non-local iso--orientation suppression, and non-local crossorientation enhancement. Following this an account is given of perceptual phenomena involving object segmentation, such as "popout", and the direct and indirect tilt illusions.
Ensemble Methods for Phoneme Classification
Waterhouse, Steve R., Cook, Gary
There is now considerable interest in using ensembles or committees of learning machines to improve the performance of the system over that of a single learning machine. In most neural network ensembles, the ensemble members are trained on either the same data (Hansen & Salamon 1990) or different subsets of the data (Perrone & Cooper 1993). The ensemble members typically have different initial conditions and/or different architectures. The subsets of the data may be chosen at random, with prior knowledge or by some principled approach e.g.