Sensing and Signal Processing
Self-Supervised Image Restoration with Blurry and Noisy Pairs
When taking photos under an environment with insufficient light, the exposure time and the sensor gain usually require to be carefully chosen to obtain images with satisfying visual quality. For example, the images with high ISO usually have inescapable noise, while the long-exposure ones may be blurry due to camera shake or object motion. Existing solutions generally suggest to seek a balance between noise and blur, and learn denoising or deblurring models under either fullor self-supervision. However, the real-world training pairs are difficult to collect, and the self-supervised methods merely rely on blurry or noisy images are limited in performance. In this work, we tackle this problem by jointly leveraging the short-exposure noisy image and the long-exposure blurry image for better image restoration. Such setting is practically feasible due to that short-exposure and longexposure images can be either acquired by two individual cameras or synthesized by a long burst of images.
An Inverse Scaling Law for CLIP Training Xianhang Li * Zeyu Wang * equal contribution
CLIP, one of the pioneering foundation models that connect images and text, has enabled many recent breakthroughs in computer vision. However, its associated training cost is prohibitively high, imposing a significant barrier to its widespread exploration. In this paper, we present a surprising finding that there exists an inverse scaling law for CLIP training, whereby the larger the image/text encoders used, the shorter the sequence length of image/text tokens that can be applied in training. Moreover, we showcase that the strategy for reducing image/text token length plays a crucial role in determining the quality of this scaling law. As a result of this finding, we are able to successfully train CLIP even with limited computational resources. For example, using 8 A100 GPUs, our CLIP models achieve zero-shot top-1 ImageNet-1k accuracies of 63.2% in
Scanning Trojaned Models Using Out-of-Distribution Samples Ali Ansari
Scanning for trojan (backdoor) in deep neural networks is crucial due to their significant real-world applications. There has been an increasing focus on developing effective general trojan scanning methods across various trojan attacks. Despite advancements, there remains a shortage of methods that perform effectively without preconceived assumptions about the backdoor attack method. Additionally, we have observed that current methods struggle to identify classifiers trojaned using adversarial training. Motivated by these challenges, our study introduces a novel scanning method named TRODO (TROjan scanning by Detection of adversarial shifts in Out-of-distribution samples).
NVRC: Neural Video Representation Compression
Recent advances in implicit neural representation (INR)-based video coding have demonstrated its potential to compete with both conventional and other learningbased approaches. With INR methods, a neural network is trained to overfit a video sequence, with its parameters compressed to obtain a compact representation of the video content. However, although promising results have been achieved, the best INR-based methods are still out-performed by the latest standard codecs, such as VVC VTM, partially due to the simple model compression techniques employed.
Long-Tailed Out-of-Distribution Detection via Normalized Outlier Distribution Adaptation
One key challenge in Out-of-Distribution (OOD) detection is the absence of groundtruth OOD samples during training. One principled approach to address this issue is to use samples from external datasets as outliers (i.e., pseudo OOD samples) to train OOD detectors. However, we find empirically that the outlier samples often present a distribution shift compared to the true OOD samples, especially in Long-Tailed Recognition (LTR) scenarios, where ID classes are heavily imbalanced, i.e., the true OOD samples exhibit very different probability distribution to the head and tailed ID classes from the outliers. In this work, we propose a novel approach, namely normalized outlier distribution adaptation (AdaptOD), to tackle this distribution shift problem. One of its key components is dynamic outlier distribution adaptation that effectively adapts a vanilla outlier distribution based on the outlier samples to the true OOD distribution by utilizing the OOD knowledge in the predicted OOD samples during inference. Further, to obtain a more reliable set of predicted OOD samples on long-tailed ID data, a novel dual-normalized energy loss is introduced in AdaptOD, which leverages class-and sample-wise normalized energy to enforce a more balanced prediction energy on imbalanced ID samples. This helps avoid bias toward the head samples and learn a substantially better vanilla outlier distribution than existing energy losses during training. It also eliminates the need of manually tuning the sensitive margin hyperparameters in energy losses.
RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees
Safeguarding intellectual property and preventing potential misuse of AI-generated images are of paramount importance. This paper introduces a robust and agile plug-and-play watermark detection framework, referred to as RAW. As a departure from existing encoder-decoder methods, which incorporate fixed binary codes as watermarks within latent representations, our approach introduces learnable watermarks directly into the original image data. Subsequently, we employ a classifier that is jointly trained with the watermark to detect the presence of the watermark. The proposed framework is compatible with various generative architectures and supports on-the-fly watermark injection after training. By incorporating state-ofthe-art smoothing techniques, we show that the framework also provides provable guarantees regarding the false positive rate for misclassifying a watermarked image, even in the presence of adversarial attacks targeting watermark removal. Experiments on a diverse range of images generated by state-of-the-art diffusion models demonstrate substantially improved watermark encoding speed and watermark detection performance, under adversarial attacks, while maintaining image quality. Our code is publicly available here.
Learning Bregman Divergences with Application to Robustness
We propose a novel and general method to learn Bregman divergences from raw high-dimensional data that measure similarity between images in pixel space. As a prototypical application, we learn divergences that consider real-world corruptions of images (e.g., blur) as close to the original and noisy perturbations as far, even if in L
Spatially Sparse Inference for Generative Image Editing Supplementary Material
For all models, we use block size 6 for 3 3 convolutions and block size 4 for 1 1 convolutions. We omit the element-wise operations for simplicity and follow the notations in Section 3. As the kernel sizes of the convolution in the shortcut branch and main branch are different, their reduced active block indices are different (Indices and Shortcut Indices). To reduce the tensor copying overheads in Scatter, we fuse Scatter and the following Gather into Scatter-Gather and fuse the Scatter in the shortcut, main branch and residual addition into Scatter with Block Residual. As mentioned in Section 3.2, we fuse Scatter and the following Gather into a Scatter-Gather Note that the pre-computation is cheap and only needs to be once for each resolution. Scatter weigh more in the shortcut branch.