Goto

Collaborating Authors

 Knowledge Management: Overviews


Generating Synthetic Data with Formal Privacy Guarantees: State of the Art and the Road Ahead

arXiv.org Artificial Intelligence

Privacy-preserving synthetic data offers a promising solution to harness segregated data in high-stakes domains where information is compartmentalized for regulatory, privacy, or institutional reasons. This survey provides a comprehensive framework for understanding the landscape of privacy-preserving synthetic data, presenting the theoretical foundations of generative models and differential privacy followed by a review of state-of-the-art methods across tabular data, images, and text. Our synthesis of evaluation approaches highlights the fundamental trade-off between utility for down-stream tasks and privacy guarantees, while identifying critical research gaps: the lack of realistic benchmarks representing specialized domains and insufficient empirical evaluations required to contextualise formal guarantees. Through empirical analysis of four leading methods on five real-world datasets from specialized domains, we demonstrate significant performance degradation under realistic privacy constraints ($\epsilon \leq 4$), revealing a substantial gap between results reported on general domain benchmarks and performance on domain-specific data. %Our findings highlight key challenges including unaccounted privacy leakage, insufficient empirical verification of formal guarantees, and a critical deficit of realistic benchmarks. These challenges underscore the need for robust evaluation frameworks, standardized benchmarks for specialized domains, and improved techniques to address the unique requirements of privacy-sensitive fields such that this technology can deliver on its considerable potential.


Towards Graph Foundation Models: A Transferability Perspective

arXiv.org Artificial Intelligence

In recent years, Graph Foundation Models (GFMs) have gained significant attention for their potential to generalize across diverse graph domains and tasks. Some works focus on Domain-Specific GFMs, which are designed to address a variety of tasks within a specific domain, while others aim to create General-Purpose GFMs that extend the capabilities of domain-specific models to multiple domains. Regardless of the type, transferability is crucial for applying GFMs across different domains and tasks. However, achieving strong transferability is a major challenge due to the structural, feature, and distributional variations in graph data. To date, there has been no systematic research examining and analyzing GFMs from the perspective of transferability. To bridge the gap, we present the first comprehensive taxonomy that categorizes and analyzes existing GFMs through the lens of transferability, structuring GFMs around their application scope (domain-specific vs. general-purpose) and their approaches to knowledge acquisition and transfer. We provide a structured perspective on current progress and identify potential pathways for advancing GFM generalization across diverse graph datasets and tasks. We aims to shed light on the current landscape of GFMs and inspire future research directions in GFM development.


Ten Challenging Problems in Federated Foundation Models

arXiv.org Artificial Intelligence

Federated Foundation Models (FedFMs) represent a distributed learning paradigm that fuses general competences of foundation models as well as privacy-preserving capabilities of federated learning. This combination allows the large foundation models and the small local domain models at the remote clients to learn from each other in a teacher-student learning setting. This paper provides a comprehensive summary of the ten challenging problems inherent in FedFMs, encompassing foundational theory, utilization of private data, continual learning, unlearning, Non-IID and graph data, bidirectional knowledge transfer, incentive mechanism design, game mechanism design, model watermarking, and efficiency. The ten challenging problems manifest in five pivotal aspects: ``Foundational Theory," which aims to establish a coherent and unifying theoretical framework for FedFMs. ``Data," addressing the difficulties in leveraging domain-specific knowledge from private data while maintaining privacy; ``Heterogeneity," examining variations in data, model, and computational resources across clients; ``Security and Privacy," focusing on defenses against malicious attacks and model theft; and ``Efficiency," highlighting the need for improvements in training, communication, and parameter efficiency. For each problem, we offer a clear mathematical definition on the objective function, analyze existing methods, and discuss the key challenges and potential solutions. This in-depth exploration aims to advance the theoretical foundations of FedFMs, guide practical implementations, and inspire future research to overcome these obstacles, thereby enabling the robust, efficient, and privacy-preserving FedFMs in various real-world applications.


Federated Continual Learning: Concepts, Challenges, and Solutions

arXiv.org Artificial Intelligence

Federated Continual Learning (FCL) has emerged as a robust solution for collaborative model training in dynamic environments, where data samples are continuously generated and distributed across multiple devices. This survey provides a comprehensive review of FCL, focusing on key challenges such as heterogeneity, model stability, communication overhead, and privacy preservation. We explore various forms of heterogeneity and their impact on model performance. Solutions to non-IID data, resource-constrained platforms, and personalized learning are reviewed in an effort to show the complexities of handling heterogeneous data distributions. Next, we review techniques for ensuring model stability and avoiding catastrophic forgetting, which are critical in non-stationary environments. Privacy-preserving techniques are another aspect of FCL that have been reviewed in this work. This survey has integrated insights from federated learning and continual learning to present strategies for improving the efficacy and scalability of FCL systems, making it applicable to a wide range of real-world scenarios.


A review on the novelty measurements of academic papers

arXiv.org Artificial Intelligence

Novelty evaluation is vital for the promotion and management of innovation. With the advancement of information techniques and the open data movement, some progress has been made in novelty measurements. Tracking and reviewing novelty measures provides a data-driven way to assess contributions, progress, and emerging directions in the science field. As academic papers serve as the primary medium for the dissemination, validation, and discussion of scientific knowledge, this review aims to offer a systematic analysis of novelty measurements for scientific papers. We began by comparing the differences between scientific novelty and four similar concepts, including originality, scientific innovation, creativity, and scientific breakthrough. Next, we reviewed the types of scientific novelty. Then, we classified existing novelty measures according to data types and reviewed the measures for each type. Subsequently, we surveyed the approaches employed in validating novelty measures and examined the current tools and datasets associated with these measures. Finally, we proposed several open issues for future studies.


Symbolic Knowledge Extraction and Injection with Sub-symbolic Predictors: A Systematic Literature Review

arXiv.org Artificial Intelligence

In this paper we focus on the opacity issue of sub-symbolic machine learning predictors by promoting two complementary activities, namely, symbolic knowledge extraction (SKE) and injection (SKI) from and into sub-symbolic predictors. We consider as symbolic any language being intelligible and interpretable for both humans and computers. Accordingly, we propose general meta-models for both SKE and SKI, along with two taxonomies for the classification of SKE and SKI methods. By adopting an explainable artificial intelligence (XAI) perspective, we highlight how such methods can be exploited to mitigate the aforementioned opacity issue. Our taxonomies are attained by surveying and classifying existing methods from the literature, following a systematic approach, and by generalising the results of previous surveys targeting specific sub-topics of either SKE or SKI alone. More precisely, we analyse 132 methods for SKE and 117 methods for SKI, and we categorise them according to their purpose, operation, expected input/output data and predictor types. For each method, we also indicate the presence/lack of runnable software implementations. Our work may be of interest for data scientists aiming at selecting the most adequate SKE/SKI method for their needs, and also work as suggestions for researchers interested in filling the gaps of the current state of the art, as well as for developers willing to implement SKE/SKI-based technologies.


Biomedical Knowledge Graph: A Survey of Domains, Tasks, and Real-World Applications

arXiv.org Artificial Intelligence

Biomedical knowledge graphs (BKGs) have emerged as powerful tools for organizing and leveraging the vast and complex data found across the biomedical field. Yet, current reviews of BKGs often limit their scope to specific domains or methods, overlooking the broader landscape and the rapid technological progress reshaping it. In this survey, we address this gap by offering a systematic review of BKGs from three core perspectives: domains, tasks, and applications. We begin by examining how BKGs are constructed from diverse data sources, including molecular interactions, pharmacological datasets, and clinical records. Next, we discuss the essential tasks enabled by BKGs, focusing on knowledge management, retrieval, reasoning, and interpretation. Finally, we highlight real-world applications in precision medicine, drug discovery, and scientific research, illustrating the translational impact of BKGs across multiple sectors. By synthesizing these perspectives into a unified framework, this survey not only clarifies the current state of BKG research but also establishes a foundation for future exploration, enabling both innovative methodological advances and practical implementations.


Reasoning based on symbolic and parametric knowledge bases: a survey

arXiv.org Artificial Intelligence

Reasoning is fundamental to human intelligence, and critical for problem-solving, decision-making, and critical thinking. Reasoning refers to drawing new conclusions based on existing knowledge, which can support various applications like clinical diagnosis, basic education, and financial analysis. Though a good number of surveys have been proposed for reviewing reasoning-related methods, none of them has systematically investigated these methods from the viewpoint of their dependent knowledge base. Both the scenarios to which the knowledge bases are applied and their storage formats are significantly different. Hence, investigating reasoning methods from the knowledge base perspective helps us better understand the challenges and future directions. To fill this gap, this paper first classifies the knowledge base into symbolic and parametric ones. The former explicitly stores information in human-readable symbols, and the latter implicitly encodes knowledge within parameters. Then, we provide a comprehensive overview of reasoning methods using symbolic knowledge bases, parametric knowledge bases, and both of them. Finally, we identify the future direction toward enhancing reasoning capabilities to bridge the gap between human and machine intelligence.


Unleashing the Power of Continual Learning on Non-Centralized Devices: A Survey

arXiv.org Artificial Intelligence

Non-Centralized Continual Learning (NCCL) has become an emerging paradigm for enabling distributed devices such as vehicles and servers to handle streaming data from a joint non-stationary environment. To achieve high reliability and scalability in deploying this paradigm in distributed systems, it is essential to conquer challenges stemming from both spatial and temporal dimensions, manifesting as distribution shifts, catastrophic forgetting, heterogeneity, and privacy issues. This survey focuses on a comprehensive examination of the development of the non-centralized continual learning algorithms and the real-world deployment across distributed devices. We begin with an introduction to the background and fundamentals of non-centralized learning and continual learning. Then, we review existing solutions from three levels to represent how existing techniques alleviate the catastrophic forgetting and distribution shift. Additionally, we delve into the various types of heterogeneity issues, security, and privacy attributes, as well as real-world applications across three prevalent scenarios. Furthermore, we establish a large-scale benchmark to revisit this problem and analyze the performance of the state-of-the-art NCCL approaches. Finally, we discuss the important challenges and future research directions in NCCL.


$\textit{SKIntern}$: Internalizing Symbolic Knowledge for Distilling Better CoT Capabilities into Small Language Models

arXiv.org Artificial Intelligence

Small Language Models (SLMs) are attracting attention due to the high computational demands and privacy concerns of Large Language Models (LLMs). Some studies fine-tune SLMs using Chains of Thought (CoT) data distilled from LLMs, aiming to enhance their reasoning ability. Furthermore, Some CoT distillation methods introduce external symbolic knowledge into the generation process to improve the limited knowledge memory, reasoning ability and out-of-domain (OOD) generalization of SLMs. However, the introduction of symbolic knowledge increases computational overhead and introduces potential noise. In this paper, we introduce $\textit{SKIntern}$, an innovative approach that empowers SLMs to internalize symbolic knowledge and few-shot examples gradually through a progressive fine-tuning process, guided by a predefined linear decay schedule under curriculum learning. By efficiently internalizing knowledge, $\textit{SKIntern}$ reduces computational overhead and speeds up the reasoning process by focusing solely on the question during inference. It outperforms state-of-the-art baselines by over 5\%, while reducing inference costs (measured in FLOPs) by up to $4\times$ across a wide range of SLMs in both in-domain (ID) and out-of-domain (OOD) tasks. Our code will be available at \url{https://github.com/Xnhyacinth/SKIntern}.