Goto

Collaborating Authors

 Data Science


Familiarity Discrimination of Radar Pulses

Neural Information Processing Systems

H3C 3A 7 CAN ADA 2Department of Cognitive and Neural Systems, Boston University Boston, MA 02215 USA Abstract The ARTMAP-FD neural network performs both identification (placing test patterns in classes encountered during training) and familiarity discrimination (judging whether a test pattern belongs to any of the classes encountered during training). The performance of ARTMAP-FD is tested on radar pulse data obtained in the field, and compared to that of the nearest-neighbor-based NEN algorithm and to a k 1 extension of NEN. 1 Introduction The recognition process involves both identification and familiarity discrimination. Consider, for example, a neural network designed to identify aircraft based on their radar reflections and trained on sample reflections from ten types of aircraft A... J. After training, the network should correctly classify radar reflections belonging to the familiar classes A... J, but it should also abstain from making a meaningless guess when presented with a radar reflection from an object belonging to a different, unfamiliar class. Familiarity discrimination is also referred to as "novelty detection," a "reject option," and "recognition in partially exposed environments."


The NASD Regulation Advanced-Detection System (ADS)

AI Magazine

The National Association of Securities Dealers, Inc., regulation advanced-detection system (ADS) monitors trades and quotations in The Nasdaq Stock Market to identify patterns and practices of behavior of potential regulatory interest. ADS has been in operational use at NASD Regulation since the summer of 1997 by several groups of analysts, processing approximately 2 million transactions a day, generating over 10,000 breaks. More important, it has greatly expanded surveillance coverage to new areas of the market and to many new types of behavior of regulatory concern. ADS combines detection and discovery components in a single system that supports multiple regulatory domains and shares the same market data. ADS makes use of a variety of AI techniques, including visualization, pattern recognition, and data mining, in support of the activities of regulatory analysis, alert and pattern detection, and knowledge discovery.


The Distributed Data-Mining Worksho

AI Magazine

Victor Lesser (University of Massachusetts at Amherst) gave an invited talk on distributed interpretation and its of Hong Kong Polytechnic University, possible implication in DDM. Mining, brought interested researchers (Brigham Young University) and Salvatore The paper sessions ended with two and practitioners together and created Stolfo (Columbia University) working paper presentations by Billy an environment for crystallizing the presented the effects of class distribution Wallace and Juan Botia, Marcedes Garijo, fast-growing field of DDM. The concluding session was the panel Lawrence Hall, Nitesh Chawla, and 40 participants attended the workshop. Stolfo, George Cybenko Kevin W. Bowyer (all of University of The workshop had 13 presentations, Stolfo stressed suggested different techniques for Cybenko of Dartmouth University. Organizers sincerely hope that the session.


Active Data Clustering

Neural Information Processing Systems

Active data clustering is a novel technique for clustering of proximity datawhich utilizes principles from sequential experiment design in order to interleave data generation and data analysis. The proposed activedata sampling strategy is based on the expected value of information, a concept rooting in statistical decision theory. This is considered to be an important step towards the analysis of largescale datasets, because it offers a way to overcome the inherent data sparseness of proximity data.


Hybrid NN/HMM-Based Speech Recognition with a Discriminant Neural Feature Extraction

Neural Information Processing Systems

In this paper, we present a novel hybrid architecture for continuous speech recognition systems. It consists of a continuous HMM system extended by an arbitrary neural network that is used as a preprocessor that takes several frames of the feature vector as input to produce more discriminative feature vectors with respect to the underlying HMM system. This hybrid system is an extension of a state-of-the-art continuous HMM system, and in fact, it is the first hybrid system that really is capable of outperforming these standard systems with respect to the recognition accuracy. Experimental results show an relative error reduction of about 10% that we achieved on a remarkably good recognition system based on continuous HMMs for the Resource Management 1 OOO-word continuous speech recognition task.


Active Data Clustering

Neural Information Processing Systems

Active data clustering is a novel technique for clustering of proximity data which utilizes principles from sequential experiment design in order to interleave data generation and data analysis. The proposed active data sampling strategy is based on the expected value of information, a concept rooting in statistical decision theory. This is considered to be an important step towards the analysis of largescale data sets, because it offers a way to overcome the inherent data sparseness of proximity data.


Intelligent Data Analysis: Reasoning About Data

AI Magazine

The Second International Symposium on Intelligent Data Analysis (IDA97) was held at Birkbeck College, University of London, on 4 to 6 August 1997. The main theme of IDA97 was to reason about how to analyze data,perhaps as human analysts do, by exploiting many methods from diverse disciplines. This article outlines several key issues and challenges, discusses how they were addressed at the conference, and presents opportunities for further work in the field.


MITA: An Information-Extraction Approach to the Analysis of Free-Form Text in Life Insurance Applications

AI Magazine

MetLife processes over 260,000 life insurance applications a year. Underwriting of these applications is labor intensive. Automation is difficult because the applications include many free-form text fields. MetLife's intelligent text analyzer (MITA) uses the information-extraction technique of natural language processing to structure the extensive textual fields on a life insurance application. Knowledge engineering, with the help of underwriters as domain experts, was performed to elicit significant concepts for both medical and occupational textual fields. A corpus of 20,000 life insurance applications provided the syntactical and semantic patterns in which these underwriting concepts occur. These patterns, in conjunction with the concepts, formed the frameworks for information extraction. Extension of the information-extraction work developed by Wendy Lehnert was used to populate these frameworks with classes obtained from the systematized nomenclature of human and veterinary medicine and the Dictionary of Occupational Titles ontologies. These structured frameworks can then be analyzed by conventional knowledge-based systems. MITA is currently processing 20,000 life insurance applications a month. Eighty-nine percent of the textual fields processed by MITA exceed the established confidence-level threshold and are potentially available for further analysis by domain-specific analyzers.


Spatiotemporal Coupling and Scaling of Natural Images and Human Visual Sensitivities

Neural Information Processing Systems

We study the spatiotemporal correlation in natural time-varying images and explore the hypothesis that the visual system is concerned with the optimal coding of visual representation through spatiotemporal decorrelation of the input signal. Based on the measured spatiotemporal power spectrum, the transform needed to decorrelate input signal is derived analytically and then compared with the actual processing observed in psychophysical experiments.


Spatiotemporal Coupling and Scaling of Natural Images and Human Visual Sensitivities

Neural Information Processing Systems

We study the spatiotemporal correlation in natural time-varying images and explore the hypothesis that the visual system is concerned with the optimal coding of visual representation through spatiotemporal decorrelation of the input signal. Based on the measured spatiotemporal power spectrum, the transform needed to decorrelate input signal is derived analytically and then compared with the actual processing observed in psychophysical experiments.