Data Science
AAAI News
Ballots will be due Applications of Artificial Intelligence have an accepted technical paper, back at the AAAI office no later than (IAAI-97) will be held in and then to students who are actively June 13. Conference on Knowledge Discovery are encouraged to apply. For further information be held November 8-10 at the Massachusetts following the American Statistical about the Scholarship Program, Institute of Technology in Association annual meeting in Anaheim. The topics Information about these conferences please contact AAAI at scholarships@aaai.org, of seven symposia will be: is available by writing to All student scholarship recipients Context in Knowledge Representation Registration materials for AAAI-97, will be required to participate in the and Natural Language Sasa IAAI-97, and KDD-97 are now available Student Volunteer Program to support Buvac (buvac@cs.stanford.edu), For further information, participation is a valuable contribution.
A Neural Network Autoassociator for Induction Motor Failure Prediction
Petsche, Thomas, Marcantonio, Angelo, Darken, Christian, Hanson, Stephen Jose, Kuhn, Gary M., Santoso, N. Iwan
We present results on the use of neural network based autoassociators which act as novelty or anomaly detectors to detect imminent motor failures. The autoassociator is trained to reconstruct spectra obtained from the healthy motor. In laboratory tests, we have demonstrated that the trained autoassociator has a small reconstruction error on measurements recorded from healthy motors but a larger error on those recorded from a motor with a fault. We have designed and built a motor monitoring system using an autoassociator for anomaly detection and are in the process of testing the system at three industrial and commercial sites.
A Neural Network Autoassociator for Induction Motor Failure Prediction
Petsche, Thomas, Marcantonio, Angelo, Darken, Christian, Hanson, Stephen Jose, Kuhn, Gary M., Santoso, N. Iwan
We present results on the use of neural network based autoassociators which act as novelty or anomaly detectors to detect imminent motor failures. The autoassociator is trained to reconstruct spectra obtained from the healthy motor. In laboratory tests, we have demonstrated that the trained autoassociator has a small reconstruction error on measurements recorded from healthy motors but a larger error on those recorded from a motor with a fault. We have designed and built a motor monitoring system using an autoassociator for anomaly detection and are in the process of testing the system at three industrial and commercial sites.
Implementation Issues in the Fourier Transform Algorithm
Tel-Aviv University Tel-Aviv, ISRAEL Abstract The Fourier transform of boolean functions has come to play an important role in proving many important learnability results. We aim to demonstrate that the Fourier transform techniques are also a useful and practical algorithm in addition to being a powerful theoretical tool. We describe the more prominent changes we have introduced to the algorithm, ones that were crucial and without which the performance of the algorithm would severely deteriorate. Oneof the benefits we present is the confidence level for each prediction which measures the likelihood the prediction is correct. 1 INTRODUCTION It has been used mainly to demonstrate the learnability of various classes of functions with respect to the uniform distribution. The work of [5] developed a very powerful algorithmic procedure: given a function and a threshold parameter it finds in polynomial time all the Fourier coefficients ofthe function larger than the threshold.
A Neural Network Autoassociator for Induction Motor Failure Prediction
Petsche, Thomas, Marcantonio, Angelo, Darken, Christian, Hanson, Stephen Jose, Kuhn, Gary M., Santoso, N. Iwan
We present results on the use of neural network based autoassociators which act as novelty or anomaly detectors to detect imminent motor failures. The autoassociator is trained to reconstruct spectra obtained from the healthy motor. In laboratory tests, we have demonstrated that the trained autoassociator has a small reconstruction error on measurements recorded from healthy motors but a larger error on those recorded from a motor with a fault. We have designed and built a motor monitoring system using an autoassociator for anomaly detection and are in the process of testing the system at three industrial and commercial sites.
From Data Mining to Knowledge Discovery in Databases
Fayyad, Usama, Piatetsky-Shapiro, Gregory, Smyth, Padhraic
Data mining and knowledge discovery in databases have been attracting a significant amount of research, industry, and media attention of late. What is all the excitement about? This article provides an overview of this emerging field, clarifying how data mining and knowledge discovery in databases are related both to each other and to related fields, such as machine learning, statistics, and databases. The article mentions particular real-world applications, specific data-mining techniques, challenges involved in real-world applications of knowledge discovery, and current and future research directions in the field.
From Data Mining to Knowledge Discovery in Databases
Fayyad, Usama, Piatetsky-Shapiro, Gregory, Smyth, Padhraic
Data mining and knowledge discovery in databases have been attracting a significant amount of research, industry, and media attention of late. What is all the excitement about? This article provides an overview of this emerging field, clarifying how data mining and knowledge discovery in databases are related both to each other and to related fields, such as machine learning, statistics, and databases. The article mentions particular real-world applications, specific data-mining techniques, challenges involved in real-world applications of knowledge discovery, and current and future research directions in the field.
From Digitized Images to Online Catalogs Data Mining a Sky Survey
Fayyad, Usama M., Djorgovski, S. G., Weir, Nicholas
The value of scientific digital-image libraries seldom lies in the pixels of images. For large collections of images, such as those resulting from astronomy sky surveys, the typical useful product is an online database cataloging entries of interest. We focus on the automation of the cataloging effort of a major sky survey and the availability of digital libraries in general. The SKICAT system automates the reduction and analysis of the three terabytes worth of images, expected to contain on the order of 2 billion sky objects. For the primary scientific analysis of these data, it is necessary to detect, measure, and classify every sky object. SKICAT integrates techniques for image processing, classification learning, database management, and visualization. The learning algorithms are trained to classify the detected objects and can classify objects too faint for visual classification with an accuracy level exceeding 90 percent. This accuracy level increases the number of classified objects in the final catalog threefold relative to the best results from digitized photographic sky surveys to date. Hence, learning algorithms played a powerful and enabling role and solved a difficult, scientifically significant problem, enabling the consistent, accurate classification and the ease of access and analysis of an otherwise unfathomable data set.
Thirteenth International Distributed AI Workshop
The goal of this workshop was which was held in June 1995 in San istributed artificial intelligence the cooperative solution of "making connections," trying to better Francisco. The DAI Workshop problems in multiagent intelligent understand the connections received financial support from the systems with both computational between DAI and related fields (for American Association for Artificial and human agents. The central problem example, computer-supported cooperative Intelligence as well as the Boeing in DAI is how to achieve coordinated work, group decision support Company. Registration materials for the Thirteenth National Conference on Artificial Intelligence (AAAI-96), the Eighth Innovative Applications of Artificial Intelligence Conference (IAAI-96), and the Second International Conference on Knowledge Discovery and Data Mining (KDD-96) are now available from the AAAI office at ncai@aaai.org Copies of the AAAI-96 registration brochure are being mailed to all AAAI members.