Data Science
Temporal alignment and latent Gaussian process factor inference in population spike trains
We introduce a novel scalable approach to identifying common latent structure in neural population spike-trains, which allows for variability both in the trajectory and in the rate of progression of the underlying computation. Our approach is based on shared latent Gaussian processes (GPs) which are combined linearly, as in the Gaussian Process Factor Analysis (GPFA) algorithm. We extend GPFA to handle unbinned spike-train data by incorporating a continuous time point-process likelihood model, achieving scalability with a sparse variational approximation. Shared variability is separated into terms that express condition dependence, as well as trial-to-trial variation in trajectories. Finally, we introduce a nested GP formulation to capture variability in the rate of evolution along the trajectory. We show that the new method learns to recover latent trajectories in synthetic data, and can accurately identify the trial-to-trial timing of movement-related parameters from motor cortical data without any supervision.
Optimization for Approximate Submodularity
Yaron Singer, Avinatan Hassidim
We consider the problem of maximizing a submodular function when given access to its approximate version. Submodular functions are heavily studied in a wide variety of disciplines since they are used to model many real world phenomena and are amenable to optimization. There are many cases however in which the phenomena we observe is only approximately submodular and the optimization guarantees cease to hold. In this paper we describe a technique that yields strong guarantees for maximization of monotone submodular functions from approximate surrogates under cardinality and intersection of matroid constraints. In particular, we show tight guarantees for maximization under a cardinality constraint and 1/(1 + P) approximation under intersection of P matroids.