Data Science
MLFMF: Data Sets for Machine Learning for Mathematical Formalization
We introduce MLFMF, a collection of data sets for benchmarking recommendation systems used to support formalization of mathematics with proof assistants. These systems help humans identify which previous entries (theorems, constructions, datatypes, and postulates) are relevant in proving a new theorem or carrying out a new construction. Each data set is derived from a library of formalized mathematics written in proof assistants Agda or Lean. The collection includes the largest Lean 4 library Mathlib, and some of the largest Agda libraries: the standard library, the library of univalent mathematics Agda-unimath, and the TypeTopology library. Each data set represents the corresponding library in two ways: as a heterogeneous network, and as a list of s-expressions representing the syntax trees of all the entries in the library.
Task-oriented Time Series Imputation Evaluation via Generalized Representers
Time series analysis is widely used in many fields such as power energy, economics, and transportation, including different tasks such as forecasting, anomaly detection, classification, etc. Missing values are widely observed in these tasks, and often leading to unpredictable negative effects on existing methods, hindering their further application. In response to this situation, existing time series imputation methods mainly focus on restoring sequences based on their data characteristics, while ignoring the performance of the restored sequences in downstream tasks. Considering different requirements of downstream tasks (e.g., forecasting), this paper proposes an efficient downstream task-oriented time series imputation evaluation approach. By combining time series imputation with neural network models used for downstream tasks, the gain of different imputation strategies on downstream tasks is estimated without retraining, and the most favorable imputation value for downstream tasks is given by combining different imputation strategies according to the estimated gain. The corresponding code can be found in the repository https://github.com/hkuedl/Task-Oriented-Imputation.
Efficient Graph Similarity Computation with Alignment Regularization
We consider the graph similarity computation (GSC) task based on graph edit distance (GED) estimation. State-of-the-art methods treat GSC as a learningbased prediction task using Graph Neural Networks (GNNs). To capture finegrained interactions between pair-wise graphs, these methods mostly contain a node-level matching module in the end-to-end learning pipeline, which causes high computational costs in both the training and inference stages. We show that the expensive node-to-node matching module is not necessary for GSC, and highquality learning can be attained with a simple yet powerful regularization technique, which we call the Alignment Regularization (AReg). In the training stage, the AReg term imposes a node-graph correspondence constraint on the GNN encoder. In the inference stage, the graph-level representations learned by the GNN encoder are directly used to compute the similarity score without using AReg again to speed up inference. We further propose a multi-scale GED discriminator to enhance the expressive ability of the learned representations. Extensive experiments on real-world datasets demonstrate the effectiveness, efficiency and transferability of our approach.