Data Science
MLFMF: Data Sets for Machine Learning for Mathematical Formalization
We introduce MLFMF, a collection of data sets for benchmarking recommendation systems used to support formalization of mathematics with proof assistants. These systems help humans identify which previous entries (theorems, constructions, datatypes, and postulates) are relevant in proving a new theorem or carrying out a new construction. Each data set is derived from a library of formalized mathematics written in proof assistants Agda or Lean. The collection includes the largest Lean 4 library Mathlib, and some of the largest Agda libraries: the standard library, the library of univalent mathematics Agda-unimath, and the TypeTopology library. Each data set represents the corresponding library in two ways: as a heterogeneous network, and as a list of s-expressions representing the syntax trees of all the entries in the library.
Task-oriented Time Series Imputation Evaluation via Generalized Representers
Time series analysis is widely used in many fields such as power energy, economics, and transportation, including different tasks such as forecasting, anomaly detection, classification, etc. Missing values are widely observed in these tasks, and often leading to unpredictable negative effects on existing methods, hindering their further application. In response to this situation, existing time series imputation methods mainly focus on restoring sequences based on their data characteristics, while ignoring the performance of the restored sequences in downstream tasks. Considering different requirements of downstream tasks (e.g., forecasting), this paper proposes an efficient downstream task-oriented time series imputation evaluation approach. By combining time series imputation with neural network models used for downstream tasks, the gain of different imputation strategies on downstream tasks is estimated without retraining, and the most favorable imputation value for downstream tasks is given by combining different imputation strategies according to the estimated gain. The corresponding code can be found in the repository https://github.com/hkuedl/Task-Oriented-Imputation.
Efficient Graph Similarity Computation with Alignment Regularization
We consider the graph similarity computation (GSC) task based on graph edit distance (GED) estimation. State-of-the-art methods treat GSC as a learningbased prediction task using Graph Neural Networks (GNNs). To capture finegrained interactions between pair-wise graphs, these methods mostly contain a node-level matching module in the end-to-end learning pipeline, which causes high computational costs in both the training and inference stages. We show that the expensive node-to-node matching module is not necessary for GSC, and highquality learning can be attained with a simple yet powerful regularization technique, which we call the Alignment Regularization (AReg). In the training stage, the AReg term imposes a node-graph correspondence constraint on the GNN encoder. In the inference stage, the graph-level representations learned by the GNN encoder are directly used to compute the similarity score without using AReg again to speed up inference. We further propose a multi-scale GED discriminator to enhance the expressive ability of the learned representations. Extensive experiments on real-world datasets demonstrate the effectiveness, efficiency and transferability of our approach.
AED: Adaptable Error Detection for Few-shot Imitation Policy Kuo-Han Hung 1, Pang-Chi Lo1, Chi-Ming Chung 1
We introduce a new task called Adaptable Error Detection (AED), which aims to identify behavior errors in few-shot imitation (FSI) policies based on visual observations in novel environments. The potential to cause serious damage to surrounding areas limits the application of FSI policies in real-world scenarios. Thus, a robust system is necessary to notify operators when FSI policies are inconsistent with the intent of demonstrations. This task introduces three challenges: (1) detecting behavior errors in novel environments, (2) identifying behavior errors that occur without revealing notable changes, and (3) lacking complete temporal information of the rollout due to the necessity of online detection. However, the existing benchmarks cannot support the development of AED because their tasks do not present all these challenges.
Sharpness-diversity tradeoff: improving flat ensembles with SharpBalance Haiquan Lu
Recent studies on deep ensembles have identified the sharpness of the local minima of individual learners and the diversity of the ensemble members as key factors in improving test-time performance. Building on this, our study investigates the interplay between sharpness and diversity within deep ensembles, illustrating their crucial role in robust generalization to both in-distribution (ID) and out-of-distribution (OOD) data. We discover a trade-off between sharpness and diversity: minimizing the sharpness in the loss landscape tends to diminish the diversity of individual members within the ensemble, adversely affecting the ensemble's improvement. The trade-off is justified through our theoretical analysis and verified empirically through extensive experiments. To address the issue of reduced diversity, we introduce SharpBalance, a novel training approach that balances sharpness and diversity within ensembles. Theoretically, we show that our training strategy achieves a better sharpness-diversity trade-off. Empirically, we conducted comprehensive evaluations in various data sets (CIFAR-10, CIFAR-100, TinyImageNet) and showed that SharpBalance not only effectively improves the sharpness-diversity trade-off, but also significantly improves ensemble performance in ID and OOD scenarios. Our code has been made open-source.
neurips_attack_recsys
Recent studies have demonstrated that recommender systems (RecSys) are vulnerable to injective attacks. Given a limited fake user budget, attackers can inject fake users with carefully designed behaviors into the open platforms, making RecSys recommend a target item to more real users for profits. In this paper, we first revisit existing attackers and reveal that they suffer from the difficulty-agnostic and diversity-deficit issues. Existing attackers concentrate their efforts on difficult users who have low tendencies toward the target item, thus reducing their effectiveness. Moreover, they are incapable of affecting the target RecSys to recommend the target item to real users in a diverse manner, because their generated fake user behaviors are dominated by large communities. To alleviate these two issues, we propose a difficulty and diversity aware attacker, namely DADA. We design the difficulty-aware and diversity-aware objectives to enable easy users from various communities to contribute more weights when optimizing attackers. By incorporating these two objectives, the proposed attacker DADA can concentrate on easy users while also affecting a broader range of real users simultaneously, thereby boosting the effectiveness. Extensive experiments on three real-world datasets demonstrate the effectiveness of our proposed attacker.