Data Science
Efficient Streaming Algorithms for Graphlet Sampling Marco Bressan Cispa Helmholtz Center for Information Security Department of Computer Science Saarland University
Given a graph G and a positive integer k, the Graphlet Sampling problem asks to sample a connected induced k-vertex subgraph of G uniformly at random. Graphlet sampling enhances machine learning applications by transforming graph structures into feature vectors for tasks such as graph classification and subgraph identification, boosting neural network performance, and supporting clustered federated learning by capturing local structures and relationships.
Feature-fortified Unrestricted Graph Alignment
The necessity to align two graphs, minimizing a structural distance metric, is prevalent in biology, chemistry, recommender systems, and social network analysis. Due to the problem's NP-hardness, prevailing graph alignment methods follow a modular and mediated approach, solving the problem restricted to the domain of intermediary graph representations or products like embeddings, spectra, and graph signals. Restricting the problem to this intermediate space may distort the original problem and are hence predisposed to miss high-quality solutions.
What the Harm Sharp Bounds on the Fraction Negatively Affected by Treatment
The fundamental problem of causal inference - that we never observe counterfactuals - prevents us from identifying how many might be negatively affected by a proposed intervention. If, in an A/B test, half of users click (or buy, or watch, or renew, etc.), whether exposed to the standard experience A or a new one B, hypothetically it could be because the change affects no one, because the change positively affects half the user population to go from no-click to click while negatively affecting the other half, or something in between. While unknowable, this impact is clearly of material importance to the decision to implement a change or not, whether due to fairness, long-term, systemic, or operational considerations. We therefore derive the tightest-possible (i.e., sharp) bounds on the fraction negatively affected (and other related estimands) given data with only factual observations, whether experimental or observational.
Beyond Euclidean: Dual-Space Representation Learning for Weakly Supervised Video Violence Detection
While numerous Video Violence Detection (VVD) methods have focused on representation learning in Euclidean space, they struggle to learn sufficiently discriminative features, leading to weaknesses in recognizing normal events that are visually similar to violent events (i.e., ambiguous violence). In contrast, hyperbolic representation learning, renowned for its ability to model hierarchical and complex relationships between events, has the potential to amplify the discrimination between visually similar events. Inspired by these, we develop a novel Dual-Space Representation Learning (DSRL) method for weakly supervised VVD to utilize the strength of both Euclidean and hyperbolic geometries, capturing the visual features of events while also exploring the intrinsic relations between events, thereby enhancing the discriminative capacity of the features. DSRL employs a novel information aggregation strategy to progressively learn event context in hyperbolic spaces, which selects aggregation nodes through layer-sensitive hyperbolic association degrees constrained by hyperbolic Dirichlet energy. Furthermore, DSRL attempts to break the cyber-balkanization of different spaces, utilizing cross-space attention to facilitate information interactions between Euclidean and hyperbolic space to capture better discriminative features for final violence detection. Comprehensive experiments demonstrate the effectiveness of our proposed DSRL.
AR-Pro: Counterfactual Explanations for Anomaly Repair with Formal Properties
Anomaly detection is widely used for identifying critical errors and suspicious behaviors, but current methods lack interpretability. We leverage common properties of existing methods and recent advances in generative models to introduce counterfactual explanations for anomaly detection. Given an input, we generate its counterfactual as a diffusion-based repair that shows what a non-anomalous version should have looked like. A key advantage of this approach is that it enables a domain-independent formal specification of explainability desiderata, offering a unified framework for generating and evaluating explanations. We demonstrate the effectiveness of our anomaly explainability framework, AR-Pro, on vision (MVTec, VisA) and time-series (SWaT, WADI, HAI) anomaly datasets. The code used for the experiments is accessible at: https://github.com/xjiae/arpro.
Mixture of Link Predictors on Graphs
Link prediction, which aims to forecast unseen connections in graphs, is a fundamental task in graph machine learning. Heuristic methods, leveraging a range of different pairwise measures such as common neighbors and shortest paths, often rival the performance of vanilla Graph Neural Networks (GNNs). Therefore, recent advancements in GNNs for link prediction (GNN4LP) have primarily focused on integrating one or a few types of pairwise information. In this work, we reveal that different node pairs within the same dataset necessitate varied pairwise information for accurate prediction and models that only apply the same pairwise information uniformly could achieve suboptimal performance. As a result, we propose a simple mixture of experts model Link-MoE for link prediction. Link-MoE utilizes various GNNs as experts and strategically selects the appropriate expert for each node pair based on various types of pairwise information. Experimental results across diverse real-world datasets demonstrate substantial performance improvement from Link-MoE. Notably, Link-MoE achieves a relative improvement of 18.71% on the MRR metric for the Pubmed dataset and 9.59% on the Hits@100 metric for the ogbl-ppa dataset, compared to the best baselines. The code is available at https://github.com/ml-ml/Link-MoE/.
EEVR: A Dataset of Paired Physiological Signals and Textual Descriptions for Joint Emotion Representation Learning
Figure 2: The figure presents still images extracted from 360 videos used in the experiment to display various environments to the participants. The videos were selected from the publically available 360 VR video dataset (Li et al. (2017).) The EEVR dataset comprises synchronized pairs of physiological signals and textual data. It includes responses to four self-assessment questions regarding perceived arousal, valence, dominance, and discrete emotions ratings collected using PANAS questionnaires (which were further utilized to calculate Positive and Negative Affect Score). The EEVR dataset was collected using Virtual Reality (VR) 360 videos as the elicitation medium. The videos utilized in the dataset were selected based on their arousal and valence ratings to cover all four quadrants of the Russell circumplex emotion model (Russell et al. (1989)), as shown in Figure 2. The remainder of the supplementary materials provide detailed information about the EEVR dataset. Figure 3 provides a datasheet for the EEVR dataset based on Gebru et al. (2018).
EEVR: A Dataset of Paired Physiological Signals and Textual Descriptions for Joint Emotion Representation Learning
EEVR (Emotion Elicitation in Virtual Reality) is a novel dataset specifically designed for language supervision-based pre-training of emotion recognition tasks, such as valence and arousal classification. It features high-quality physiological signals, including electrodermal activity (EDA) and photoplethysmography (PPG), acquired through emotion elicitation via 360-degree virtual reality (VR) videos. Additionally, it includes subject-wise textual descriptions of emotions experienced during each stimulus gathered from qualitative interviews. The dataset consists of recordings from 37 participants and is the first dataset to pair raw text with physiological signals, providing additional contextual information that objective labels cannot offer. To leverage this dataset, we introduced the Contrastive Language Signal Pre-training (CLSP) method, which jointly learns representations using pairs of physiological signals and textual descriptions. Our results show that integrating self-reported textual descriptions with physiological signals significantly improves performance on emotion recognition tasks, such as arousal and valence classification. Moreover, our pre-trained CLSP model demonstrates strong zero-shot transferability to existing datasets, outperforming supervised baseline models, suggesting that the representations learned by our method are more contextualized and generalized. The dataset also includes baseline models for arousal, valence, and emotion classification, as well as code for data cleaning and feature extraction.
Differentially Private Graph Diffusion with Applications in Personalized PageRanks
Graph diffusion, which iteratively propagates real-valued substances among the graph, is used in numerous graph/network-involved applications. However, releasing diffusion vectors may reveal sensitive linking information in the data such as transaction information in financial network data. Protecting the privacy of graph data is challenging due to its interconnected nature. This work proposes a novel graph diffusion framework with edge-level differential privacy guarantees by using noisy diffusion iterates. The algorithm injects Laplace noise per diffusion iteration and adopts a degree-based thresholding function to mitigate the high sensitivity induced by low-degree nodes. Our privacy loss analysis is based on Privacy Amplification by Iteration (PABI), which to our best knowledge, is the first effort that analyzes PABI with Laplace noise and provides relevant applications. We also introduce a novel -Wasserstein distance tracking method, which tightens the analysis of privacy leakage and makes PABI practically applicable. We evaluate this framework by applying it to Personalized Pagerank computation for ranking tasks. Experiments on real-world network data demonstrate the superiority of our method under stringent privacy conditions.
Mind the Gap Between Prototypes and Images in Cross-domain Finetuning
In cross-domain few-shot classification (CFC), recent works mainly focus on adapting a simple transformation head on top of a frozen pre-trained backbone with few labeled data to project embeddings into a task-specific metric space where classification can be performed by measuring similarities between image instance and prototype representations. Technically, an assumption implicitly adopted in such a framework is that the prototype and image instance embeddings share the same representation transformation. However, in this paper, we find that there naturally exists a gap, which resembles the modality gap, between the prototype and image instance embeddings extracted from the frozen pre-trained backbone, and simply applying the same transformation during the adaptation phase constrains exploring the optimal representations and shrinks the gap between prototype and image representations. To solve this problem, we propose a simple yet effective method, contrastive prototype-image adaptation (CoPA), to adapt different transformations respectively for prototypes and images similarly to CLIP by treating prototypes as text prompts. Extensive experiments on Meta-Dataset demonstrate that CoPA achieves the state-of-the-art performance more efficiently. Meanwhile, further analyses also indicate that CoPA can learn better representation clusters, enlarge the gap, and achieve minimal validation loss at the enlarged gap.