Goto

Collaborating Authors

 Data Mining


Online Models for Content Optimization

Neural Information Processing Systems

We describe a new content publishing system that selects articles to serve to a user, choosing from an editorially programmed pool that is frequently refreshed. It is now deployed on a major Internet portal, and selects articles to serve to hundreds of millions of user visits per day, significantly increasing the number of user clicks over the original manual approach, in which editors periodically selected articles to display. Some of the challenges we face include a dynamic content pool, short article lifetimes, non-stationary click-through rates, and extremely high traffic volumes. The fundamental problem we must solve is to quickly identify which items are popular(perhaps within different user segments), and to exploit them while they remain current. We must also explore the underlying pool constantly to identify promising alternatives, quickly discarding poor performers. Our approach is based on tracking per article performance in near real time through online models. We describe the characteristics and constraints of our application setting, discuss our design choices, and show the importance and effectiveness of coupling online models with a simple randomization procedure. We discuss the challenges encountered in a production online content-publishing environment and highlight issues that deserve careful attention. Our analysis of this application also suggests a number of future research avenues.


Efficient Direct Density Ratio Estimation for Non-stationarity Adaptation and Outlier Detection

Neural Information Processing Systems

We address the problem of estimating the ratio of two probability density functions (a.k.a.~the importance). The importance values can be used for various succeeding tasks such as non-stationarity adaptation or outlier detection. In this paper, we propose a new importance estimation method that has a closed-form solution; the leave-one-out cross-validation score can also be computed analytically. Therefore, the proposed method is computationally very efficient and numerically stable. We also elucidate theoretical properties of the proposed method such as the convergence rate and approximation error bound. Numerical experiments show that the proposed method is comparable to the best existing method in accuracy, while it is computationally more efficient than competing approaches.


Label Selection on Graphs

Neural Information Processing Systems

We investigate methods for selecting sets of labeled vertices for use in predicting the labels of vertices on a graph. We specifically study methods which choose a single batch of labeled vertices (i.e. offline, non sequential methods). In this setting, we find common graph smoothness assumptions directly motivate simple label selection methods with interesting theoretical guarantees. These methods bound prediction error in terms of the smoothness of the true labels with respect to the graph. Some of these bounds give new motivations for previously proposed algorithms, and some suggest new algorithms which we evaluate. We show improved performance over baseline methods on several real world data sets.


Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity

Neural Information Processing Systems

We consider the problem of extracting smooth low-dimensional ``neural trajectories'' that summarize the activity recorded simultaneously from tens to hundreds of neurons on individual experimental trials. Beyond the benefit of visualizing the high-dimensional noisy spiking activity in a compact denoised form, such trajectories can offer insight into the dynamics of the neural circuitry underlying the recorded activity. Current methods for extracting neural trajectories involve a two-stage process: the data are first ``denoised'' by smoothing over time, then a static dimensionality reduction technique is applied. We first describe extensions of the two-stage methods that allow the degree of smoothing to be chosen in a principled way, and account for spiking variability that may vary both across neurons and across time. We then present a novel method for extracting neural trajectories, Gaussian-process factor analysis (GPFA), which unifies the smoothing and dimensionality reduction operations in a common probabilistic framework. We applied these methods to the activity of 61 neurons recorded simultaneously in macaque premotor and motor cortices during reach planning and execution. By adopting a goodness-of-fit metric that measures how well the activity of each neuron can be predicted by all other recorded neurons, we found that GPFA provided a better characterization of the population activity than the two-stage methods. From the extracted single-trial neural trajectories, we directly observed a convergence in neural state during motor planning, an effect suggestive of attractor dynamics that was shown indirectly by previous studies.


Algorithms for Infinitely Many-Armed Bandits

Neural Information Processing Systems

We consider multi-armed bandit problems where the number of arms is larger than the possible number of experiments. We make a stochastic assumption on the mean-reward of a new selected arm which characterizes its probability of being anear-optimal arm. Our assumption is weaker than in previous works. We describe algorithms based on upper-confidence-bounds applied to a restricted set of randomly selected arms and provide upper-bounds on the resulting expected regret. We also derive a lower-bound which matches (up to a logarithmic factor) the upper-bound in some cases.


Dimensionality Reduction for Data in Multiple Feature Representations

Neural Information Processing Systems

In solving complex visual learning tasks, adopting multiple descriptors to more precisely characterize the data has been a feasible way for improving performance. These representations are typically high dimensional and assume diverse forms. Thus finding a way to transform them into a unified space of lower dimension generally facilitates the underlying tasks, such as object recognition or clustering. We describe an approach that incorporates multiple kernel learning with dimensionality reduction (MKL-DR). While the proposed framework is flexible in simultaneously tackling data in various feature representations, the formulation itself is general in that it is established upon graph embedding. It follows that any dimensionality reduction techniques explainable by graph embedding can be generalized by our method to consider data in multiple feature representations.


Similarit\'e en intension vs en extension : \`a la crois\'ee de l'informatique et du th\'e\^atre

arXiv.org Artificial Intelligence

Traditional staging is based on a formal approach of similarity leaning on dramaturgical ontologies and instanciation variations. Inspired by interactive data mining, that suggests different approaches, we give an overview of computer science and theater researches using computers as partners of the actor to escape the a priori specification of roles.


Discovering general partial orders in event streams

arXiv.org Artificial Intelligence

Frequent episode discovery is a popular framework for pattern discovery in event streams. An episode is a partially ordered set of nodes with each node associated with an event type. Efficient (and separate) algorithms exist for episode discovery when the associated partial order is total (serial episode) and trivial (parallel episode). In this paper, we propose efficient algorithms for discovering frequent episodes with general partial orders. These algorithms can be easily specialized to discover serial or parallel episodes. Also, the algorithms are flexible enough to be specialized for mining in the space of certain interesting subclasses of partial orders. We point out that there is an inherent combinatorial explosion in frequent partial order mining and most importantly, frequency alone is not a sufficient measure of interestingness. We propose a new interestingness measure for general partial order episodes and a discovery method based on this measure, for filtering out uninteresting partial orders. Simulations demonstrate the effectiveness of our algorithms.


A Trend Pattern Approach to Forecasting Socio-Political Violence

AAAI Conferences

We present an approach to identifying concurrent patterns of behavior in in-sample temporal factor training data that precede Events of Interest (EoIs). We also present how to use discovered patterns to forecast EoIs in out-of-sample test data. The forecasting methodology is based on matching entities' observed behaviors to patterns discovered in retrospective data. This pattern concept is a generalization of previous pattern definitions. The new pattern concept, based around patterns observed in trends of factor data is based on a finite-state model where observed, sustained trends in a factor map to pattern states. Discovered patterns can be used as a diagnostic tool to better understand the dynamic conditions leading up to specific Event of Interest occurrences and hint at underlying causal structures leading to onsets and terminations of socio-political violence. We present a computationally efficient data-mining method to discover trend patterns. We give an example of using our pattern forecasting methodology to correctly forecast the advent and cessation of ethnic-religious violence in nation states with a low false-alarm rate.


The Cyborg Astrobiologist: Testing a Novelty-Detection Algorithm on Two Mobile Exploration Systems at Rivas Vaciamadrid in Spain and at the Mars Desert Research Station in Utah

arXiv.org Machine Learning

(ABRIDGED) In previous work, two platforms have been developed for testing computer-vision algorithms for robotic planetary exploration (McGuire et al. 2004b,2005; Bartolo et al. 2007). The wearable-computer platform has been tested at geological and astrobiological field sites in Spain (Rivas Vaciamadrid and Riba de Santiuste), and the phone-camera has been tested at a geological field site in Malta. In this work, we (i) apply a Hopfield neural-network algorithm for novelty detection based upon color, (ii) integrate a field-capable digital microscope on the wearable computer platform, (iii) test this novelty detection with the digital microscope at Rivas Vaciamadrid, (iv) develop a Bluetooth communication mode for the phone-camera platform, in order to allow access to a mobile processing computer at the field sites, and (v) test the novelty detection on the Bluetooth-enabled phone-camera connected to a netbook computer at the Mars Desert Research Station in Utah. This systems engineering and field testing have together allowed us to develop a real-time computer-vision system that is capable, for example, of identifying lichens as novel within a series of images acquired in semi-arid desert environments. We acquired sequences of images of geologic outcrops in Utah and Spain consisting of various rock types and colors to test this algorithm. The algorithm robustly recognized previously-observed units by their color, while requiring only a single image or a few images to learn colors as familiar, demonstrating its fast learning capability.