Plotting

 Control Systems


Stochastic Optimal Control and Estimation with Multiplicative and Internal Noise

Neural Information Processing Systems

A pivotal brain computation relies on the ability to sustain perception-action loops. Stochastic optimal control theory offers a mathematical framework to explain these processes at the algorithmic level through optimality principles. However, incorporating a realistic noise model of the sensorimotor system -- accounting for multiplicative noise in feedback and motor output, as well as internal noise in estimation -- makes the problem challenging. Currently, the algorithm that is commonly used is the one proposed in the seminal study in [1]. After discovering some pitfalls in the original derivation, i.e., unbiased estimation does not hold, we improve the algorithm by proposing an efficient gradient descent-based optimization that minimizes the cost-to-go while only imposing linearity of the control law. The optimal solution is obtained by iteratively propagating in closed form the sufficient statistics to compute the expected cost and then minimizing this cost with respect to the filter and control gains. We demonstrate that this approach results in a significantly lower overall cost than current state-of-the-art solutions, particularly in the presence of internal noise, though the improvement is present in other circumstances as well, with theoretical explanations for this enhanced performance. Providing the optimal control law is key for inverse control inference, especially in explaining behavioral data under rationality assumptions.


Output-Feedback Boundary Control of Thermally and Flow-Induced Vibrations in Slender Timoshenko Beams

arXiv.org Artificial Intelligence

-- This work is motivated by the engineering challenge of suppressing vibrations in turbine blades of aero engines, which often operate under extreme thermal conditions and high-Mach aerodynamic environments that give rise to complex vibration phenomena, commonly referred to as thermally-induced and flow-induced vibrations. Using Hamilton's variational principle, the system is modeled as a rotating slender Timoshenko beam under thermal and aerodynamic loads, described by a mixed hyperbolic-parabolic PDE system where instabilities occur both within the PDE domain and at the uncontrolled boundary, and the two types of PDEs are cascaded in the domain. For such a system, we present the state-feedback control design based on the PDE backstepping method. Recognizing that the distributed temperature gradients and structural vibrations in the Timoshenko beam are typically unmeasurable in practice, we design a state observer for the mixed hyperbolic-parabolic PDE system. Based on this observer, an output-feedback controller is then built to regulate the overall system using only available boundary measurements. In the closed-loop system, the state of the uncontrolled boundary, i.e., the furthest state from the control input, is proved to be exponentially convergent to zero, and all signals are proved as uniformly ultimately bounded. The proposed control design is validated on an aero-engine flexible blade under extreme thermal and aerodynamic conditions.


Online Optimal Control with Linear Dynamics and Predictions: Algorithms and Regret Analysis

Neural Information Processing Systems

This paper studies the online optimal control problem with time-varying convex stage costs for a time-invariant linear dynamical system, where a finite lookahead window of accurate predictions of the stage costs are available at each time. We design online algorithms, Receding Horizon Gradient-based Control (RHGC), that utilize the predictions through finite steps of gradient computations. We study the algorithm performance measured by dynamic regret: the online performance minus the optimal performance in hindsight. It is shown that the dynamic regret of RHGC decays exponentially with the size of the lookahead window. In addition, we provide a fundamental limit of the dynamic regret for any online algorithms by considering linear quadratic tracking problems. The regret upper bound of one RHGC method almost reaches the fundamental limit, demonstrating the effectiveness of the algorithm. Finally, we numerically test our algorithms for both linear and nonlinear systems to show the effectiveness and generality of our RHGC.


Neural optimal feedback control with local learning rules Johannes Friedrich 1 Shiva Farashahi 1 Alexander Genkin

Neural Information Processing Systems

A major problem in motor control is understanding how the brain plans and executes proper movements in the face of delayed and noisy stimuli. A prominent framework for addressing such control problems is Optimal Feedback Control (OFC). OFC generates control actions that optimize behaviorally relevant criteria by integrating noisy sensory stimuli and the predictions of an internal model using the Kalman filter or its extensions. However, a satisfactory neural model of Kalman filtering and control is lacking because existing proposals have the following limitations: not considering the delay of sensory feedback, training in alternating phases, and requiring knowledge of the noise covariance matrices, as well as that of systems dynamics. Moreover, the majority of these studies considered Kalman filtering in isolation, and not jointly with control.


Probabilistic inverse optimal control for non-linear partially observable systems disentangles perceptual uncertainty and behavioral costs

Neural Information Processing Systems

Inverse optimal control can be used to characterize behavior in sequential decisionmaking tasks. Most existing work, however, is limited to fully observable or linear systems, or requires the action signals to be known. Here, we introduce a probabilistic approach to inverse optimal control for partially observable stochastic non-linear systems with unobserved action signals, which unifies previous approaches to inverse optimal control with maximum causal entropy formulations. Using an explicit model of the noise characteristics of the sensory and motor systems of the agent in conjunction with local linearization techniques, we derive an approximate likelihood function for the model parameters, which can be computed within a single forward pass.


Stochastic Optimal Control and Estimation with Multiplicative and Internal Noise

Neural Information Processing Systems

A pivotal brain computation relies on the ability to sustain perception-action loops. Stochastic optimal control theory offers a mathematical framework to explain these processes at the algorithmic level through optimality principles. However, incorporating a realistic noise model of the sensorimotor system -- accounting for multiplicative noise in feedback and motor output, as well as internal noise in estimation -- makes the problem challenging. Currently, the algorithm that is commonly used is the one proposed in the seminal study in (Todorov, 2005). After discovering some pitfalls in the original derivation, i.e., unbiased estimation does not hold, we improve the algorithm by proposing an efficient gradient descent-based optimization that minimizes the cost-to-go while only imposing linearity of the control law.


Stochastic Optimal Control Matching

Neural Information Processing Systems

Stochastic optimal control, which has the goal of driving the behavior of noisy systems, is broadly applicable in science, engineering and artificial intelligence. Our work introduces Stochastic Optimal Control Matching (SOCM), a novel Iterative Diffusion Optimization (IDO) technique for stochastic optimal control that stems from the same philosophy as the conditional score matching loss for diffusion models. That is, the control is learned via a least squares problem by trying to fit a matching vector field. The training loss, which is closely connected to the cross-entropy loss, is optimized with respect to both the control function and a family of reparameterization matrices which appear in the matching vector field. The optimization with respect to the reparameterization matrices aims at minimizing the variance of the matching vector field.


Solving Inverse Problems via Diffusion Optimal Control

Neural Information Processing Systems

Existing approaches to diffusion-based inverse problem solvers frame the signal recovery task as a probabilistic sampling episode, where the solution is drawn from the desired posterior distribution. This framework suffers from several critical drawbacks, including the intractability of the conditional likelihood function, strict dependence on the score network approximation, and poor \mathbf{x}_0 prediction quality. We demonstrate that these limitations can be sidestepped by reframing the generative process as a discrete optimal control episode. We derive a diffusion-based optimal controller inspired by the iterative Linear Quadratic Regulator (iLQR) algorithm. This framework is fully general and able to handle any differentiable forward measurement operator, including super-resolution, inpainting, Gaussian deblurring, nonlinear deblurring, and even highly nonlinear neural classifiers.


Stochastic Optimal Control for Diffusion Bridges in Function Spaces

Neural Information Processing Systems

Recent advancements in diffusion models and diffusion bridges primarily focus on finite-dimensional spaces, yet many real-world problems necessitate operations in infinite-dimensional function spaces for more natural and interpretable formulations. In this paper, we present a theory of stochastic optimal control (SOC) tailored to infinite-dimensional spaces, aiming to extend diffusion-based algorithms to function spaces. Specifically, we demonstrate how Doob's h -transform, the fundamental tool for constructing diffusion bridges, can be derived from the SOC perspective and expanded to infinite dimensions. This expansion presents a challenge, as infinite-dimensional spaces typically lack closed-form densities. Leveraging our theory, we establish that solving the optimal control problem with a specific objective function choice is equivalent to learning diffusion-based generative models. We propose two applications: 1) learning bridges between two infinite-dimensional distributions and 2) generative models for sampling from an infinite-dimensional distribution.


Optimal Output Feedback Learning Control for Discrete-Time Linear Quadratic Regulation

arXiv.org Artificial Intelligence

This paper studies the linear quadratic regulation (LQR) problem of unknown discrete-time systems via dynamic output feedback learning control. In contrast to the state feedback, the optimality of the dynamic output feedback control for solving the LQR problem requires an implicit condition on the convergence of the state observer. Moreover, due to unknown system matrices and the existence of observer error, it is difficult to analyze the convergence and stability of most existing output feedback learning-based control methods. To tackle these issues, we propose a generalized dynamic output feedback learning control approach with guaranteed convergence, stability, and optimality performance for solving the LQR problem of unknown discrete-time linear systems. In particular, a dynamic output feedback controller is designed to be equivalent to a state feedback controller. This equivalence relationship is an inherent property without requiring convergence of the estimated state by the state observer, which plays a key role in establishing the off-policy learning control approaches. By value iteration and policy iteration schemes, the adaptive dynamic programming based learning control approaches are developed to estimate the optimal feedback control gain. In addition, a model-free stability criterion is provided by finding a nonsingular parameterization matrix, which contributes to establishing a switched iteration scheme. Furthermore, the convergence, stability, and optimality analyses of the proposed output feedback learning control approaches are given. Finally, the theoretical results are validated by two numerical examples.