Goto

Collaborating Authors

 Vision


Dynamical And-Or Graph Learning for Object Shape Modeling and Detection

Neural Information Processing Systems

This paper studies a novel discriminative part-based model to represent and recognize object shapes with an โ€œAnd-Or graphโ€. We define this model consisting of three layers: the leaf-nodes with collaborative edges for localizing local parts, the or-nodes specifying the switch of leaf-nodes, and the root-node encoding the global verification. A discriminative learning algorithm, extended from the CCCP [23], is proposed to train the model in a dynamical manner: the model structure (e.g., the configuration of the leaf-nodes associated with the or-nodes) is automatically determined with optimizing the multi-layer parameters during the iteration. The advantages of our method are two-fold. (i) The And-Or graph model enables us to handle well large intra-class variance and background clutters for object shape detection from images. (ii) The proposed learning algorithm is able to obtain the And-Or graph representation without requiring elaborate supervision and initialization. We validate the proposed method on several challenging databases (e.g., INRIA-Horse, ETHZ-Shape, and UIUC-People), and it outperforms the state-of-the-arts approaches.


Discriminatively Trained Sparse Code Gradients for Contour Detection

Neural Information Processing Systems

Finding contours in natural images is a fundamental problem that serves as the basis of many tasks such as image segmentation and object recognition. At the core of contour detection technologies are a set of hand-designed gradient features, used by most existing approaches including the state-of-the-art Global Pb (gPb) operator. In this work, we show that contour detection accuracy can be significantly improved by computing Sparse Code Gradients (SCG), which measure contrast using patch representations automatically learned through sparse coding. We use K-SVD and Orthogonal Matching Pursuit for efficient dictionary learning and encoding, and use multi-scale pooling and power transforms to code oriented local neighborhoods before computing gradients and applying linear SVM. By extracting rich representations from pixels and avoiding collapsing them prematurely, Sparse Code Gradients effectively learn how to measure local contrasts and find contours. We improve the F-measure metric on the BSDS500 benchmark to 0.74 (up from 0.71 of gPb contours). Moreover, our learning approach can easily adapt to novel sensor data such as Kinect-style RGB-D cameras: Sparse Code Gradients on depth images and surface normals lead to promising contour detection using depth and depth+color, as verified on the NYU Depth Dataset. Our work combines the concept of oriented gradients with sparse representation and opens up future possibilities for learning contour detection and segmentation.


Controlled Recognition Bounds for Visual Learning and Exploration

Neural Information Processing Systems

We describe the tradeoff between the performance in a visual recognition problem and the control authority that the agent can exercise on the sensing process. We focus on the problem of "visual search" of an object in an otherwise known and static scene, propose a measure of control authority, and relate it to the expected risk and its proxy (conditional entropy of the posterior density). We show this analytically, as well as empirically by simulation using the simplest known model that captures the phenomenology of image formation, including scaling and occlusions. We show that a "passive" agent given a training set can provide no guarantees on performance beyond what is afforded by the priors, and that an "omnipotent" agent, capable of infinite control authority, can achieve arbitrarily good performance (asymptotically). In between these limiting cases, the tradeoff can be characterized empirically.


Unsupervised Template Learning for Fine-Grained Object Recognition

Neural Information Processing Systems

Fine-grained recognition refers to a subordinate level of recognition, such are recognizing different species of birds, animals or plants. It differs from recognition of basic categories, such as humans, tables, and computers, in that there are global similarities in shape or structure shared within a category, and the differences are in the details of the object parts. We suggest that the key to identifying the fine-grained differences lies in finding the right alignment of image regions that contain the same object parts. We propose a template model for the purpose, which captures common shape patterns of object parts, as well as the co-occurence relation of the shape patterns. Once the image regions are aligned, extracted features are used for classification. Learning of the template model is efficient, and the recognition results we achieve significantly outperform the state-of-the-art algorithms.


Convolutional-Recursive Deep Learning for 3D Object Classification

Neural Information Processing Systems

Recent advances in 3D sensing technologies make it possible to easily record color and depth images which together can improve object recognition. Most current methods rely on very well-designed features for this new 3D modality. We introduce amodel based on a combination of convolutional and recursive neural networks (CNN and RNN) for learning features and classifying RGB-D images. The CNN layer learns low-level translationally invariant features which are then given as inputs to multiple, fixed-tree RNNs in order to compose higher order features. RNNscan be seen as combining convolution and pooling into one efficient, hierarchical operation. Our main result is that even RNNs with random weights compose powerful features. Our model obtains state of the art performance on a standard RGB-D object dataset while being more accurate and faster during training andtesting than comparable architectures such as two-layer CNNs.


Context-Sensitive Decision Forests for Object Detection

Neural Information Processing Systems

In this paper we introduce Context-Sensitive Decision Forests - A new perspective to exploit contextual information in the popular decision forest framework for the object detection problem. They are tree-structured classifiers with the ability to access intermediate prediction (here: classification and regression) information during training and inference time. This intermediate prediction is available to each sample, which allows us to develop context-based decision criteria, used for refining the prediction process. In addition, we introduce a novel split criterion which in combination with a priority based way of constructing the trees, allows more accurate regression mode selection and hence improves the current context information. In our experiments, we demonstrate improved results for the task of pedestrian detection on the challenging TUD data set when compared to state-of-the-art methods.


Learning about Canonical Views from Internet Image Collections

Neural Information Processing Systems

Although human object recognition is supposedly robust to viewpoint, much research on human perception indicates that there is a preferred or โ€œcanonicalโ€ view of objects. This phenomenon was discovered more than 30 years ago but the canonical view of only a small number of categories has been validated experimentally. Moreover, the explanation for why humans prefer the canonical view over other views remains elusive. In this paper we ask: Can we use Internet image collections to learn more about canonical views? We start by manually finding the most common view in the results returned by Internet search engines when queried with the objects used in psychophysical experiments. Our results clearly show that the most likely view in the search engine corresponds to the same view preferred by human subjects in experiments. We also present a simple method to find the most likely view in an image collection and apply it to hundreds of categories. Using the new data we have collected we present strong evidence against the two most prominent formal theories of canonical views and provide novel constraints for new theories.


Memorability of Image Regions

Neural Information Processing Systems

While long term human visual memory can store a remarkable amount of visual information, it tends to degrade over time. Recent works have shown that image memorability is an intrinsic property of an image that can be reliably estimated using state-of-the-art image features and machine learning algorithms. However, the class of features and image information that is forgotten has not been explored yet. In this work, we propose a probabilistic framework that models how and which local regions from an image may be forgotten using a data-driven approach that combines local and global images features. The model automatically discovers memorabilitymaps of individual images without any human annotation. We incorporate multiple image region attributes in our algorithm, leading to improved memorability prediction of images as compared to previous works.


Localizing 3D cuboids in single-view images

Neural Information Processing Systems

In this paper we seek to detect rectangular cuboids and localize their corners in uncalibrated single-view images depicting everyday scenes. In contrast to recent approaches that rely on detecting vanishing points of the scene and grouping line segments to form cuboids, we build a discriminative parts-based detector that models the appearance of the cuboid corners and internal edges while enforcing consistency to a 3D cuboid model. Our model is invariant to the different 3D viewpoints and aspect ratios and is able to detect cuboids across many different object categories. We introduce a database of images with cuboid annotations that spans a variety of indoor and outdoor scenes and show qualitative and quantitative results on our collected database. Our model out-performs baseline detectors that use 2D constraints alone on the task of localizing cuboid corners.


Searching for objects driven by context

Neural Information Processing Systems

The dominant visual search paradigm for object class detection is sliding windows. Although simple and effective, it is also wasteful, unnatural and rigidly hardwired. We propose strategies to search for objects which intelligently explore the space of windows by making sequential observations at locations decided based on previous observations. Our strategies adapt to the class being searched and to the content of a particular test image. Their driving force is exploiting context as the statistical relation between the appearance of a window and its location relative to the object, as observed in the training set. In addition to being more elegant than sliding windows, we demonstrate experimentally on the PASCAL VOC 2010 dataset that our strategies evaluate two orders of magnitude fewer windows while at the same time achieving higher detection accuracy.