Goto

Collaborating Authors

Vision: Overviews


Why you should learn Computer Vision and how you can get started

#artificialintelligence

In today's world, Computer Vision technologies are everywhere. They are embedded within many of the tools and applications that we use on a daily basis. However, we often pay little attention to those underlaying Computer Vision technologies because they tend to run in the background. As a result, only a small fraction of those outside the tech industries know about the importance of those technologies. Therefore, the goal of this article is to provide an overview of Computer Vision to those with little to no knowledge about the field. I attempt to achieve this goal by answering three questions: What is Computer Vision?, Why should you learn Computer Vision? and How you can get started?


Google releases Model Card Toolkit to promote AI model transparency

#artificialintelligence

Google today released the Model Card Toolkit, a toolset designed to facilitate AI model transparency reporting for developers, regulators, and downstream users. It's based on Google's Model Cards framework for reporting on model provenance, usage, and "ethics-informed" evaluation, which aims to provide an overview of a model's suggested uses and limitations. Over the past year, Google publicly launched Model Cards, which sprang from a Google AI whitepaper published in October 2018. Model Cards specify model architectures and provide insight into factors that help ensure optimal performance for given use cases. To date, Google has released Model Cards for open source models built on its MediaPipe platform, as well as its commercial Cloud Vision API Face Detection and Object Detection services.


Intro To Computer Vision - Classification

#artificialintelligence

Thanks to advancements in deep learning & artificial neural networks, computer vision is increasingly capable of mimicking human vision & is paving the way for self-driving cars, medical diagnosis, scanning recorded surveillance, manufacturing & much more. In this introductory workshop, Sage Elliot will give an overview of deep learning as it related to computer vision with a focused discussion around image classification. You will also learn about careers in computer vision & who are some of the biggest users of this technology. About Your Instructor: Sage Elliott is a Machine Learning Developer Evangelist for Sixgill with about 10 years of experience in the engineering space. He has passion for exploring new technologies & building communities.


Intelligent Pneumonia Identification from Chest X-Rays: A Systematic Literature Review

#artificialintelligence

Chest radiography is an important diagnostic tool for chest-related diseases. Medical imaging research is currently embracing the automatic detection techniques used in computer vision. Over the past decade, Deep Learning techniques have shown an enormous breakthrough in the field of medical diagnostics. Various automated systems have been proposed for the rapid detection of pneumonia on chest x-rays images Although such detection algorithms are many and varied, they have not been summarized into a review that would assist practitioners in selecting the best methods from a real-time perspective, perceiving the available datasets, and understanding the currently achieved results in this domain. After summarizing the topic, the review analyzes the usability, goodness factors, and computational complexities of the algorithms that implement these techniques.


Deep Learning for Object Detection: A Comprehensive Review

#artificialintelligence

With the rise of autonomous vehicles, smart video surveillance, facial detection and various people counting applications, fast and accurate object detection systems are rising in demand. These systems involve not only recognizing and classifying every object in an image, but localizing each one by drawing the appropriate bounding box around it. This makes object detection a significantly harder task than its traditional computer vision predecessor, image classification.


Everything So Far In CVPR 2020 Conference

#artificialintelligence

Computer Vision and Pattern Recognition (CVPR) conference is one of the most popular events around the globe where computer vision experts and researchers gather to share their work and views on the trending techniques on various computer vision topics, including object detection, video understanding, visual recognition, among others. This year, the Computer Vision (CV) researchers and engineers have gathered virtually for the conference from 14 June, which will last till 19 June. In this article, we have listed down all the important topics and tutorials that have been discussed on the 1st and 2nd day of the conference. In this tutorial, the researchers presented the latest developments in robust model fitting, recent advancements in new sampling and local optimisation methods, novel branch-and-bound and mathematical programming algorithms in the global methods as well as the latest developments in differentiable alternative to Random Sample Consensus Algorithm or RANSAC. To know what a RANSAC is and how it works, click here.


Machine Vision Software: What's "Under the Hood"

#artificialintelligence

The successful application of machine vision technology involves an intricately and carefully balanced mix of a variety of elements. While the hardware components that perform the tasks of image formation, acquisition, component control, and interfacing are decidedly critical to the solution, machine vision software is the engine "under the hood" that supports and drives the imaging, processing, and ultimately the results. This discussion will detail the various ways software impacts industrial machine vision systems and how it is applied to achieve a complete solution within different component architectures. We also will take a brief look at general design and specification criteria and current trends in software that might contribute to greater reliability in some machine vision tasks for industrial automation. The diverse marketplace for machine vision technology features components and systems with widely varying architectures.


Computer Vision: An overview about the field of computer vision

#artificialintelligence

Computer vision is a field in computer science that falls under the umbrella of artificial intelligence (AI). Computer vision (CV) software developers strive to give computers the ability to process images in much the same way that humans do. They expect the computer will be able to identify objects, to make appropriate decisions based on what it "sees," and then to produce relevant outputs. Today, facial recognition software, autonomous vehicles, certain forms of surveillance, and gesture recognition are just a few examples of CV systems at work. Why is computer vision so complicated? Every parent can recall their child going through phases when "what's that?" became a recurring question.


Semi-Lexical Languages -- A Formal Basis for Unifying Machine Learning and Symbolic Reasoning in Computer Vision

arXiv.org Artificial Intelligence

Human vision is able to compensate imperfections in sensory inputs from the real world by reasoning based on prior knowledge about the world. Machine learning has had a significant impact on computer vision due to its inherent ability in handling imprecision, but the absence of a reasoning framework based on domain knowledge limits its ability to interpret complex scenarios. We propose semi-lexical languages as a formal basis for dealing with imperfect tokens provided by the real world. The power of machine learning is used to map the imperfect tokens into the alphabet of the language and symbolic reasoning is used to determine the membership of input in the language. Semi-lexical languages also have bindings that prevent the variations in which a semi-lexical token is interpreted in different parts of the input, thereby leaning on deduction to enhance the quality of recognition of individual tokens. We present case studies that demonstrate the advantage of using such a framework over pure machine learning and pure symbolic methods.


Moment-Based Domain Adaptation: Learning Bounds and Algorithms

arXiv.org Machine Learning

This thesis contributes to the mathematical foundation of domain adaptation as emerging field in machine learning. In contrast to classical statistical learning, the framework of domain adaptation takes into account deviations between probability distributions in the training and application setting. Domain adaptation applies for a wider range of applications as future samples often follow a distribution that differs from the ones of the training samples. A decisive point is the generality of the assumptions about the similarity of the distributions. Therefore, in this thesis we study domain adaptation problems under as weak similarity assumptions as can be modelled by finitely many moments.