Vision
A Delay-Line Based Motion Detection Chip
Horiuchi, Tim, Lazzaro, John, Moore, Andrew, Koch, Christof
Inspired by a visual motion detection model for the ra.bbit retina and by a computational architecture used for early audition in the barn owl, we have designed a chip that employs a correlation model to report the one-dimensional field motion of a scene in real time. Using subthreshold analog VLSI techniques, we have fabricated and successfully tested a 8000 transistor chip using a standard MOSIS process.
Qualitative structure from motion
I have presented a qualitative approach to the problem of recovering object structure from motion information and discussed some of its computational, psychophysical and implementational aspects. The computation of qualitative shape, as represented bythe sign of the Gaussian curvature, can be performed by a field of simple operators, in parallel over the entire image. The performance of a qualitative shape detection module, implemented by an artificial neural network, appears to be similar to the performance of human subjects in an identical task.
TRAFFIC: Recognizing Objects Using Hierarchical Reference Frame Transformations
Zemel, Richard S., Mozer, Michael C., Hinton, Geoffrey E.
We describe a model that can recognize two-dimensional shapes in an unsegmented image, independent of their orientation, position, and scale. The model, called TRAFFIC, efficiently represents the structural relation between an object and each of its component features by encoding the fixed viewpoint-invariant transformation from the feature's reference frame to the object's in the weights of a connectionist network. Using a hierarchy of such transformations, with increasing complexity of features at each successive layer, the network can recognize multiple objects in parallel. An implementation of TRAFFIC is described, along with experimental results demonstrating the network's ability to recognize constellations of stars in a viewpoint-invariant manner. 1 INTRODUCTION A key goal of machine vision is to recognize familiar objects in an unsegmented image, independent of their orientation, position, and scale. Massively parallel models have long been used for lower-level vision tasks, such as primitive feature extraction and stereo depth. Models addressing "higher-level" vision have generally been restricted to pattern matching types of problems, in which much of the inherent complexity of the domain has been eliminated or ignored.
TRAFFIC: Recognizing Objects Using Hierarchical Reference Frame Transformations
Zemel, Richard S., Mozer, Michael C., Hinton, Geoffrey E.
We describe a model that can recognize two-dimensional shapes in an unsegmented image, independent of their orientation, position, and scale. The model, called TRAFFIC, efficiently represents the structural relation between an object and each of its component features by encoding the fixed viewpoint-invariant transformation from the feature's reference frame to the object's in the weights of a connectionist network. Using a hierarchy of such transformations, with increasing complexity of features at each successive layer, the network can recognize multiple objects in parallel. An implementation ofTRAFFIC is described, along with experimental results demonstrating the network's ability to recognize constellations of stars in a viewpoint-invariant manner. 1 INTRODUCTION A key goal of machine vision is to recognize familiar objects in an unsegmented image, independent of their orientation, position, and scale. Massively parallel models have long been used for lower-level vision tasks, such as primitive feature extraction and stereo depth.
Real-Time Computer Vision and Robotics Using Analog VLSI Circuits
Koch, Christof, Bair, Wyeth, Harris, John G., Horiuchi, Timothy K., Hsu, Andrew, Luo, Jin
The long-term goal of our laboratory is the development of analog resistive network-based VLSI implementations of early and intermediate visionalgorithms. We demonstrate an experimental circuit for smoothing and segmenting noisy and sparse depth data using the resistive fuse and a 1-D edge-detection circuit for computing zero-crossingsusing two resistive grids with different spaceconstants. Todemonstrate the robustness of our algorithms and of the fabricated analog CMOS VLSI chips, we are mounting these circuits onto small mobile vehicles operating in a real-time, laboratory environment.
Real-Time Computer Vision and Robotics Using Analog VLSI Circuits
Koch, Christof, Bair, Wyeth, Harris, John G., Horiuchi, Timothy K., Hsu, Andrew, Luo, Jin
The long-term goal of our laboratory is the development of analog resistive network-based VLSI implementations of early and intermediate vision algorithms. We demonstrate an experimental circuit for smoothing and segmenting noisy and sparse depth data using the resistive fuse and a 1-D edge-detection circuit for computing zero-crossings using two resistive grids with different spaceconstants. To demonstrate the robustness of our algorithms and of the fabricated analog CMOS VLSI chips, we are mounting these circuits onto small mobile vehicles operating in a real-time, laboratory environment.