Goto

Collaborating Authors

 Vision


EC Mamba: Consolidating Selective State Space Model with Retinex Guidance for Efficient Multiple Exposure Correction

Neural Information Processing Systems

Exposure Correction (EC) aims to recover proper exposure conditions for images captured under over-exposure or under-exposure scenarios. While existing deep learning models have shown promising results, few have fully embedded Retinex theory into their architecture, highlighting a gap in current methodologies. Additionally, the balance between high performance and efficiency remains an under-explored problem for exposure correction task. Inspired by Mamba which demonstrates powerful and highly efficient sequence modeling, we introduce a novel framework based on Mamba for Exposure Correction (ECMamba) with dual pathways, each dedicated to the restoration of reflectance and illumination map, respectively. Specifically, we firstly derive the Retinex theory and we train a Retinex estimator capable of mapping inputs into two intermediary spaces, each approximating the target reflectance and illumination map, respectively. This setup facilitates the refined restoration process of the subsequent Exposure Correction Mamba Module (ECMM). Moreover, we develop a novel 2D Selective Statespace layer guided by Retinex information (Retinex-SS2D) as the core operator of ECMM. This architecture incorporates an innovative 2D scanning strategy based on deformable feature aggregation, thereby enhancing both efficiency and effectiveness. Extensive experiment results and comprehensive ablation studies demonstrate the outstanding performance and the importance of each component of our proposed ECMamba.


LRM-Zero: Training Large Reconstruction Models with Synthesized Data

Neural Information Processing Systems

We present LRM-Zero, a Large Reconstruction Model (LRM) trained entirely on synthesized 3D data, achieving high-quality sparse-view 3D reconstruction. The core of LRM-Zero is our procedural 3D dataset, Zeroverse, which is automatically synthesized from simple primitive shapes with random texturing and augmentations (e.g., height fields, boolean differences, and wireframes). Unlike previous 3D datasets (e.g., Objaverse) which are often captured or crafted by humans to approximate real 3D data, Zeroverse completely ignores realistic global semantics but is rich in complex geometric and texture details that are locally similar to or even more intricate than real objects. We demonstrate that our LRM-Zero, trained with our fully synthesized Zeroverse, can achieve high visual quality in the reconstruction of real-world objects, competitive with models trained on Objaverse. We also analyze several critical design choices of Zeroverse that contribute to LRM-Zero's capability and training stability. Our work demonstrates that 3D reconstruction, one of the core tasks in 3D vision, can potentially be addressed without the semantics of real-world objects. The Zeroverse's procedural synthesis code and interactive visualization are available at: https://desaixie.github.io/lrm-zero/.


Color-Oriented Redundancy Reduction in Dataset Distillation

Neural Information Processing Systems

Dataset Distillation (DD) is designed to generate condensed representations of extensive image datasets, enhancing training efficiency. Despite recent advances, there remains considerable potential for improvement, particularly in addressing the notable redundancy within the color space of distilled images. In this paper, we propose AutoPalette, a framework that minimizes color redundancy at the individual image and overall dataset levels, respectively. At the image level, we employ a palette network, a specialized neural network, to dynamically allocate colors from a reduced color space to each pixel. The palette network identifies essential areas in synthetic images for model training and consequently assigns more unique colors to them. At the dataset level, we develop a color-guided initialization strategy to minimize redundancy among images. Representative images with the least replicated color patterns are selected based on the information gain. A comprehensive performance study involving various datasets and evaluation scenarios is conducted, demonstrating the superior performance of our proposed color-aware DD compared to existing DD methods.


G3: An Effective and Adaptive Framework for Worldwide Geolocalization Using Large Multi-Modality Models

Neural Information Processing Systems

Worldwide geolocalization aims to locate the precise location at the coordinate level of photos taken anywhere on the Earth. It is very challenging due to 1) the difficulty of capturing subtle location-aware visual semantics, and 2) the heterogeneous geographical distribution of image data. As a result, existing studies have clear limitations when scaled to a worldwide context. They may easily confuse distant images with similar visual contents, or cannot adapt to various locations worldwide with different amounts of relevant data. To resolve these limitations, we propose G3, a novel framework based on Retrieval-Augmented Generation (RAG).


Multilinear Mixture of Experts: Scalable Expert Specialization through Factorization James Oldfield

Neural Information Processing Systems

The Mixture of Experts (MoE) paradigm provides a powerful way to decompose dense layers into smaller, modular computations often more amenable to human interpretation, debugging, and editability. However, a major challenge lies in the computational cost of scaling the number of experts high enough to achieve finegrained specialization. In this paper, we propose the Multilinear Mixture of Experts (ยตMoE) layer to address this, focusing on vision models.


Alias-Free Mamba Neural Operator

Neural Information Processing Systems

Benefiting from the booming deep learning techniques, neural operators (NO) are considered as an ideal alternative to break the traditions of solving Partial Differential Equations (PDE) with expensive cost.


FineStyle: Fine-grained Controllable Style Personalization for Text-to-image Models

Neural Information Processing Systems

Nine image pairs are generated by personalized text-to-image models, each of which is fine-tuned on a respective, single style reference image displayed at the corner of the left image of each pair. Fine-grained concepts are written on top of the images for comparisons, showing the nuanced compositionality encompassing color, foreground object, background, and textures. Full prompts are available in Appendix A.1.


Graph Convolutions Enrich the Self-Attention in Transformers!

Neural Information Processing Systems

Transformers, renowned for their self-attention mechanism, have achieved state-ofthe-art performance across various tasks in natural language processing, computer vision, time-series modeling, etc. However, one of the challenges with deep Transformer models is the oversmoothing problem, where representations across layers converge to indistinguishable values, leading to significant performance degradation. We interpret the original self-attention as a simple graph filter and redesign it from a graph signal processing (GSP) perspective.


Katherine L. Hermann Andrew K. Lampinen

Neural Information Processing Systems

In naturalistic learning problems, a model's input contains a wide range of features, some useful for the task at hand, and others not. Of the useful features, which ones does the model use? Of the task-irrelevant features, which ones does the model represent? Answers to these questions are important for understanding the basis of models' decisions, as well as for building models that learn versatile, adaptable representations useful beyond the original training task. We study these questions using synthetic datasets in which the task-relevance of input features can be controlled directly.


InterDreamer: Zero-Shot Textto 3D Dynamic Human-Object Interaction Ziyin Wang

Neural Information Processing Systems

Text-conditioned human motion generation has experienced significant advancements with diffusion models trained on extensive motion capture data and corresponding textual annotations. However, extending such success to 3D dynamic human-object interaction (HOI) generation faces notable challenges, primarily due to the lack of large-scale interaction data and comprehensive descriptions that align with these interactions. This paper takes the initiative and showcases the potential of generating human-object interactions without direct training on text-interaction pair data. Our key insight in achieving this is that interaction semantics and dynamics can be decoupled. Being unable to learn interaction semantics through supervised training, we instead leverage pre-trained large models, synergizing knowledge from a large language model and a text-to-motion model. While such knowledge offers high-level control over interaction semantics, it cannot grasp the intricacies of low-level interaction dynamics. To overcome this issue, we introduce a world model designed to comprehend simple physics, modeling how human actions influence object motion. By integrating these components, our novel framework, InterDreamer, is able to generate text-aligned 3D HOI sequences without relying on paired text-interaction data. We apply InterDreamer to the BEHAVE, OMOMO, and CHAIRS datasets, and our comprehensive experimental analysis demonstrates its capability to generate realistic and coherent interaction sequences that seamlessly align with the text directives.