Vision
Transformer Doctor: Diagnosing and Treating Vision Transformers, Hao Chen 1, Yang Gao
Due to its powerful representational capabilities, Transformers have gradually become the mainstream model in the field of machine vision. However, the vast and complex parameters of Transformers impede researchers from gaining a deep understanding of their internal mechanisms, especially error mechanisms. Existing methods for interpreting Transformers mainly focus on understanding them from the perspectives of the importance of input tokens or internal modules, as well as the formation and meaning of features. In contrast, inspired by research on information integration mechanisms and conjunctive errors in the biological visual system, this paper conducts an in-depth exploration of the internal error mechanisms of Transformers. We first propose an information integration hypothesis for Transformers in the machine vision domain and provide substantial experimental evidence to support this hypothesis. This includes the dynamic integration of information among tokens and the static integration of information within tokens in Transformers, as well as the presence of conjunctive errors therein. Addressing these errors, we further propose heuristic dynamic integration constraint methods and rule-based static integration constraint methods to rectify errors and ultimately improve model performance. The entire methodology framework is termed as Transformer Doctor, designed for diagnosing and treating internal errors within transformers. Through a plethora of quantitative and qualitative experiments, it has been demonstrated that Transformer Doctor can effectively address internal errors in transformers, thereby enhancing model performance.
Denoising Diffusion Path: Attribution Noise Reduction with An Auxiliary Diffusion Model Yiming Lei 1
The explainability of deep neural networks (DNNs) is critical for trust and reliability in AI systems. Path-based attribution methods, such as integrated gradients (IG), aim to explain predictions by accumulating gradients along a path from a baseline to the target image. However, noise accumulated during this process can significantly distort the explanation. While existing methods primarily concentrate on finding alternative paths to circumvent noise, they overlook a critical issue: intermediate-step images frequently diverge from the distribution of training data, further intensifying the impact of noise. This work presents a novel Denoising Diffusion Path (DDPath) to tackle this challenge by harnessing the power of diffusion models for denoising. By exploiting the inherent ability of diffusion models to progressively remove noise from an image, DDPath constructs a piece-wise linear path. Each segment of this path ensures that samples drawn from a Gaussian distribution are centered around the target image.
HEST-1k: A Dataset for Spatial Transcriptomics and Histology Image Analysis Paul Doucet 1,3, Andrew H. Song 1,2 Ming Y. Lu1,2,4
Spatial transcriptomics enables interrogating the molecular composition of tissue with ever-increasing resolution and sensitivity. However, costs, rapidly evolving technology, and lack of standards have constrained computational methods in ST to narrow tasks and small cohorts. In addition, the underlying tissue morphology, as reflected by H&E-stained whole slide images (WSIs), encodes rich information often overlooked in ST studies. Here, we introduce HEST-1k, a collection of 1,229 spatial transcriptomic profiles, each linked to a WSI and extensive metadata. HEST-1k was assembled from 153 public and internal cohorts encompassing 26 organs, two species (Homo Sapiens and Mus Musculus), and 367 cancer samples from 25 cancer types. HEST-1k processing enabled the identification of 2.1 million expression-morphology pairs and over 76 million nuclei. To support its development, we additionally introduce the HEST-Library, a Python package designed to perform a range of actions with HEST samples. We test HEST-1k and Library on three use cases: (1) benchmarking foundation models for pathology (HEST-Benchmark), (2) biomarker exploration, and (3) multimodal representation learning. HEST-1k, HEST-Library, and HEST-Benchmark can be freely accessed at https://github.com/mahmoodlab/hest.
Flow Snapshot Neurons in Action: Deep Neural Networks Generalize to Biological Motion Perception Shuangpeng Han 1,2 College of Computing and Data Science, Nanyang Technological University, Singapore
Biological motion perception (BMP) refers to humans' ability to perceive and recognize the actions of living beings solely from their motion patterns, sometimes as minimal as those depicted on point-light displays. While humans excel at these tasks without any prior training, current AI models struggle with poor generalization performance. To close this research gap, we propose the Motion Perceiver (MP). MP solely relies on patch-level optical flows from video clips as inputs. During training, it learns prototypical flow snapshots through a competitive binding mechanism and integrates invariant motion representations to predict action labels for the given video. During inference, we evaluate the generalization ability of all AI models and humans on 62,656 video stimuli spanning 24 BMP conditions using point-light displays in neuroscience. Remarkably, MP outperforms all existing AI models with a maximum improvement of 29% in top-1 action recognition accuracy on these conditions.
Spatial Mixture-of-Experts
Many data have an underlying dependence on spatial location; it may be weather on the Earth, a simulation on a mesh, or a registered image. Yet this feature is rarely taken advantage of, and violates common assumptions made by many neural network layers, such as translation equivariance. Further, many works that do incorporate locality fail to capture fine-grained structure.
AllClear: A Comprehensive Dataset and Benchmark for Cloud Removal in Satellite Imagery
Clouds in satellite imagery pose a significant challenge for downstream applications. A major challenge in current cloud removal research is the absence of a comprehensive benchmark and a sufficiently large and diverse training dataset. To address this problem, we introduce the largest public dataset -- AllClear for cloud removal, featuring 23,742 globally distributed regions of interest (ROIs) with diverse land-use patterns, comprising 4 million images in total. Each ROI includes complete temporal captures from the year 2022, with (1) multi-spectral optical imagery from Sentinel-2 and Landsat 8/9, (2) synthetic aperture radar (SAR) imagery from Sentinel-1, and (3) auxiliary remote sensing products such as cloud masks and land cover maps. We validate the effectiveness of our dataset by benchmarking performance, demonstrating the scaling law -- the PSNR rises from 28.47 to 33.87 with 30 more data, and conducting ablation studies on the temporal length and the importance of individual modalities. This dataset aims to provide comprehensive coverage of the Earth's surface and promote better cloud removal results.
EC Mamba: Consolidating Selective State Space Model with Retinex Guidance for Efficient Multiple Exposure Correction
Exposure Correction (EC) aims to recover proper exposure conditions for images captured under over-exposure or under-exposure scenarios. While existing deep learning models have shown promising results, few have fully embedded Retinex theory into their architecture, highlighting a gap in current methodologies. Additionally, the balance between high performance and efficiency remains an under-explored problem for exposure correction task. Inspired by Mamba which demonstrates powerful and highly efficient sequence modeling, we introduce a novel framework based on Mamba for Exposure Correction (ECMamba) with dual pathways, each dedicated to the restoration of reflectance and illumination map, respectively. Specifically, we firstly derive the Retinex theory and we train a Retinex estimator capable of mapping inputs into two intermediary spaces, each approximating the target reflectance and illumination map, respectively. This setup facilitates the refined restoration process of the subsequent Exposure Correction Mamba Module (ECMM). Moreover, we develop a novel 2D Selective Statespace layer guided by Retinex information (Retinex-SS2D) as the core operator of ECMM. This architecture incorporates an innovative 2D scanning strategy based on deformable feature aggregation, thereby enhancing both efficiency and effectiveness. Extensive experiment results and comprehensive ablation studies demonstrate the outstanding performance and the importance of each component of our proposed ECMamba.
LRM-Zero: Training Large Reconstruction Models with Synthesized Data
We present LRM-Zero, a Large Reconstruction Model (LRM) trained entirely on synthesized 3D data, achieving high-quality sparse-view 3D reconstruction. The core of LRM-Zero is our procedural 3D dataset, Zeroverse, which is automatically synthesized from simple primitive shapes with random texturing and augmentations (e.g., height fields, boolean differences, and wireframes). Unlike previous 3D datasets (e.g., Objaverse) which are often captured or crafted by humans to approximate real 3D data, Zeroverse completely ignores realistic global semantics but is rich in complex geometric and texture details that are locally similar to or even more intricate than real objects. We demonstrate that our LRM-Zero, trained with our fully synthesized Zeroverse, can achieve high visual quality in the reconstruction of real-world objects, competitive with models trained on Objaverse. We also analyze several critical design choices of Zeroverse that contribute to LRM-Zero's capability and training stability. Our work demonstrates that 3D reconstruction, one of the core tasks in 3D vision, can potentially be addressed without the semantics of real-world objects. The Zeroverse's procedural synthesis code and interactive visualization are available at: https://desaixie.github.io/lrm-zero/.
Color-Oriented Redundancy Reduction in Dataset Distillation
Dataset Distillation (DD) is designed to generate condensed representations of extensive image datasets, enhancing training efficiency. Despite recent advances, there remains considerable potential for improvement, particularly in addressing the notable redundancy within the color space of distilled images. In this paper, we propose AutoPalette, a framework that minimizes color redundancy at the individual image and overall dataset levels, respectively. At the image level, we employ a palette network, a specialized neural network, to dynamically allocate colors from a reduced color space to each pixel. The palette network identifies essential areas in synthetic images for model training and consequently assigns more unique colors to them. At the dataset level, we develop a color-guided initialization strategy to minimize redundancy among images. Representative images with the least replicated color patterns are selected based on the information gain. A comprehensive performance study involving various datasets and evaluation scenarios is conducted, demonstrating the superior performance of our proposed color-aware DD compared to existing DD methods.
G3: An Effective and Adaptive Framework for Worldwide Geolocalization Using Large Multi-Modality Models
Worldwide geolocalization aims to locate the precise location at the coordinate level of photos taken anywhere on the Earth. It is very challenging due to 1) the difficulty of capturing subtle location-aware visual semantics, and 2) the heterogeneous geographical distribution of image data. As a result, existing studies have clear limitations when scaled to a worldwide context. They may easily confuse distant images with similar visual contents, or cannot adapt to various locations worldwide with different amounts of relevant data. To resolve these limitations, we propose G3, a novel framework based on Retrieval-Augmented Generation (RAG).