Natural Language
Meta-Controller: Few-Shot Imitation of Unseen Embodiments and Tasks in Continuous Control
Generalizing across robot embodiments and tasks is crucial for adaptive robotic systems. Modular policy learning approaches adapt to new embodiments but are limited to specific tasks, while few-shot imitation learning (IL) approaches often focus on a single embodiment. In this paper, we introduce a few-shot behavior cloning framework to simultaneously generalize to unseen embodiments and tasks using a few (e.g., five) reward-free demonstrations. Our framework leverages a joint-level input-output representation to unify the state and action spaces of heterogeneous embodiments and employs a novel structure-motion state encoder that is parameterized to capture both shared knowledge across all embodiments and embodiment-specific knowledge. A matching-based policy network then predicts actions from a few demonstrations, producing an adaptive policy that is robust to over-fitting. Evaluated in the DeepMind Control suite, our framework termed Meta-Controller demonstrates superior few-shot generalization to unseen embodiments and tasks over modular policy learning and few-shot IL approaches.
The Benefits of Balance: From Information Projections to Variance Reduction
Data balancing across multiple modalities and sources appears in various forms in foundation models in machine learning and AI, e.g. in CLIP and DINO. We show that data balancing across modalities and sources actually offers an unsuspected benefit: variance reduction. We present a non-asymptotic statistical bound that quantifies this variance reduction effect and relates it to the eigenvalue decay of Markov operators. Furthermore, we describe how various forms of data balancing in contrastive multimodal learning and self-supervised clustering can be better understood, and even improved upon, owing to our variance reduction viewpoint.
EDT: An Efficient Diffusion Transformer Framework Inspired by Human-like Sketching
Transformer-based Diffusion Probabilistic Models (DPMs) have shown more potential than CNN-based DPMs, yet their extensive computational requirements hinder widespread practical applications. To reduce the computation budget of transformer-based DPMs, this work proposes the Efficient Diffusion Transformer (EDT) framework. The framework includes a lightweight-design diffusion model architecture, and a training-free Attention Modulation Matrix and its alternation arrangement in EDT inspired by human-like sketching. Additionally, we propose a token relation-enhanced masking training strategy tailored explicitly for EDT to augment its token relation learning capability. Our extensive experiments demonstrate the efficacy of EDT. The EDT framework reduces training and inference costs and surpasses existing transformer-based diffusion models in image synthesis performance, thereby achieving a significant overall enhancement. With lower FID, EDT-S, EDT-B, and EDT-XL attained speed-ups of 3.93x, 2.84x, and 1.92x respectively in the training phase, and 2.29x, 2.29x, and 2.22x respectively in inference, compared to the corresponding sizes of MDTv2. Our code is available at here.
A Broader Impact, Limitations and Future Work
Figure 8: Visualisation of programmatically generated captions for Shapes3D [19] (right) and DSprites [115] (left, black and white). Chosen at random, some captions are complete with exact details, while some only have more generic descriptors. Caption style leverages templates generated by GPT-4. The default resolution of these images is 64 64, hence the low-resolution appearance.
A Practitioner's Guide to Continual Multimodal Pretraining Karsten Roth 1,2,6 Sebastian Dziadzio
Multimodal foundation models serve numerous applications at the intersection of vision and language. Still, despite being pretrained on extensive data, they become outdated over time. To keep models updated, research into continual pretraining mainly explores scenarios with either (1) infrequent, indiscriminate updates on large-scale new data, or (2) frequent, sample-level updates. However, practical model deployment often operates in the gap between these two limit cases, as real-world applications demand adaptation to specific subdomains, tasks or concepts -- spread over the entire, varying life cycle of a model. In this work, we complement current perspectives on continual pretraining through a research test bed and offer comprehensive guidance for effective continual model updates in such scenarios. We first introduce FoMo-in-Flux, a continual multimodal pretraining benchmark with realistic compute constraints and practical deployment requirements, constructed over 63 datasets with diverse visual and semantic coverage. Using FoMo-in-Flux, we explore the complex landscape of practical continual pretraining through multiple perspectives: (1) data mixtures and stream orderings that emulate real-world deployment settings, (2) methods ranging from simple fine-tuning and traditional continual learning strategies to parameter-efficient updates and model merging, (3) meta-learning-rate schedules and mechanistic design choices, and (4) model and compute scaling. Together, our insights provide a practitioner's guide to continual multimodal pretraining for real-world deployment.
Anchor-Free Correlated Topic Modeling: Identifiability and Algorithm
Kejun Huang, Xiao Fu, Nikolaos D. Sidiropoulos
In topic modeling, many algorithms that guarantee identifiability of the topics have been developed under the premise that there exist anchor words - i.e., words that only appear (with positive probability) in one topic. Follow-up work has resorted to three or higher-order statistics of the data corpus to relax the anchor word assumption. Reliable estimates of higher-order statistics are hard to obtain, however, and the identification of topics under those models hinges on uncorrelatedness of the topics, which can be unrealistic. This paper revisits topic modeling based on second-order moments, and proposes an anchor-free topic mining framework. The proposed approach guarantees the identification of the topics under a much milder condition compared to the anchor-word assumption, thereby exhibiting much better robustness in practice. The associated algorithm only involves one eigendecomposition and a few small linear programs. This makes it easy to implement and scale up to very large problem instances. Experiments using the TDT2 and Reuters-21578 corpus demonstrate that the proposed anchor-free approach exhibits very favorable performance (measured using coherence, similarity count, and clustering accuracy metrics) compared to the prior art.
Enhancing LLM's Cognition via Structurization
When reading long-form text, human cognition is complex and structurized. While large language models (LLMs) process input contexts through a causal and sequential perspective, this approach can potentially limit their ability to handle intricate and complex inputs effectively. To enhance LLM's cognition capability, this paper presents a novel concept of context structurization. Specifically, we transform the plain, unordered contextual sentences into well-ordered and hierarchically structurized elements. By doing so, LLMs can better grasp intricate and extended contexts through precise attention and information-seeking along the organized structures. Extensive evaluations are conducted across various model architectures and sizes (including a series of auto-regressive LLMs as well as BERT-like masking models) on a diverse set of NLP tasks (e.g., context-based question-answering, exhaustive hallucination evaluation, and passage-level dense retrieval). Empirical results show consistent and significant performance gains afforded by a singleround structurization. In particular, we boost the open-sourced LLaMA2-70B model to achieve comparable performance against GPT-3.5-Turbo
CODE: Contrasting Self-generated Description to Combat Hallucination in Large Multi-modal Models Junho Kim Hyun Jun Kim Yeon Ju Kim Yong Man Ro
Large Multi-modal Models (LMMs) have recently demonstrated remarkable abilities in visual context understanding and coherent response generation. However, alongside these advancements, the issue of hallucinations has emerged as a significant challenge, producing erroneous responses that are unrelated to the visual contents. In this paper, we introduce a novel contrastive-based decoding method, COuntering DEscription Contrastive Decoding (CODE), which leverages selfgenerated descriptions as contrasting references during the decoding phase of LMMs to address hallucination issues. CODE utilizes the comprehensive descriptions from model itself as visual counterpart to correct and improve response alignment with actual visual content. By dynamically adjusting the information flow and distribution of next-token predictions in the LMM's vocabulary, CODE enhances the coherence and informativeness of generated responses. Extensive experiments demonstrate that our method significantly reduces hallucinations and improves cross-modal consistency across various benchmarks and cutting-edge LMMs. Our method provides a simple yet effective decoding strategy that can be integrated to existing LMM frameworks without additional training.
Any2Policy: Learning Visuomotor Policy with Any-Modality
Humans can communicate and observe media with different modalities, such as texts, sounds, and images. For robots to be more generalizable embodied agents, they should be capable of following instructions and perceiving the world with adaptation to diverse modalities. Current robotic learning methodologies often focus on single-modal task specification and observation, thereby limiting their ability to process rich multi-modal information. Addressing this limitation, we present an end-to-end general-purpose multi-modal system named Any-to-Policy Embodied Agents. This system empowers robots to handle tasks using various modalities, whether in combinations like text-image, audio-image, text-point cloud, or in isolation.