Natural Language
Proving Olympiad Algebraic Inequalities without Human Demonstrations Mengzhou Sun
Solving Olympiad-level mathematical problems represents a significant advancement in machine intelligence and automated reasoning. Current machine learning methods, however, struggle to solve Olympiad-level problems beyond Euclidean plane geometry due to a lack of large-scale, high-quality datasets. The challenge is even greater in algebraic systems, which involve infinite reasoning spaces within finite conditions. To address these issues, we propose AIPS, an Algebraic Inequality Proving System capable of autonomously generating complex inequality theorems and effectively solving Olympiad-level inequality problems without requiring human demonstrations. During proof search in a mixed reasoning manner, a value curriculum learning strategy on generated datasets is implemented to improve proving performance, demonstrating strong mathematical intuitions. On a test set of 20 International Mathematical Olympiad-level inequality problems, AIPS successfully solved 10, outperforming state-of-the-art methods. Furthermore, AIPS automatically generated a vast array of non-trivial theorems without human intervention, some of which have been evaluated by professional contestants and deemed to reach the level of the International Mathematical Olympiad. Notably, one theorem was selected as a competition problem in a major city's 2024 Mathematical Olympiad. All the materials are available at sites.google.com/view/aips2.
Slice-based Learning: A Programming Model for Residual Learning in Critical Data Slices
Vincent Chen, Sen Wu, Alexander J. Ratner, Jen Weng, Christopher Rรฉ
In real-world machine learning applications, data subsets correspond to especially critical outcomes: vulnerable cyclist detections are safety-critical in an autonomous driving task, and "question" sentences might be important to a dialogue agent's language understanding for product purposes. While machine learning models can achieve high quality performance on coarse-grained metrics like F1-score and overall accuracy, they may underperform on critical subsets--we define these as slices, the key abstraction in our approach. To address slice-level performance, practitioners often train separate "expert" models on slice subsets or use multi-task hard parameter sharing. We propose Slice-based Learning, a new programming model in which the slicing function (SF), a programming interface, specifies critical data subsets for which the model should commit additional capacity. Any model can leverage SFs to learn slice expert representations, which are combined with an attention mechanism to make slice-aware predictions. We show that our approach maintains a parameter-efficient representation while improving over baselines by up to 19.0 F1 on slices and 4.6 F1 overall on datasets spanning language understanding (e.g.
Customized Multiple Clustering via Multi-Modal Subspace Proxy Learning Qi Qian 2 School of Engineering and Technology, University of Washington, Tacoma, WA98402, USA
Multiple clustering aims to discover various latent structures of data from different aspects. Deep multiple clustering methods have achieved remarkable performance by exploiting complex patterns and relationships in data. However, existing works struggle to flexibly adapt to diverse user-specific needs in data grouping, which may require manual understanding of each clustering. To address these limitations, we introduce Multi-Sub, a novel end-to-end multiple clustering approach that incorporates a multi-modal subspace proxy learning framework in this work. Utilizing the synergistic capabilities of CLIP and GPT-4, Multi-Sub aligns textual prompts expressing user preferences with their corresponding visual representations. This is achieved by automatically generating proxy words from large language models that act as subspace bases, thus allowing for the customized representation of data in terms specific to the user's interests. Our method consistently outperforms existing baselines across a broad set of datasets in visual multiple clustering tasks.
Conjugated Semantic Pool Improves OOD Detection with Pre-trained Vision-Language Models
A straightforward pipeline for zero-shot out-of-distribution (OOD) detection involves selecting potential OOD labels from an extensive semantic pool and then leveraging a pre-trained vision-language model to perform classification on both in-distribution (ID) and OOD labels. In this paper, we theorize that enhancing performance requires expanding the semantic pool, while increasing the expected probability of selected OOD labels being activated by OOD samples, and ensuring low mutual dependence among the activations of these OOD labels. A natural expansion manner is to adopt a larger lexicon; however, the inevitable introduction of numerous synonyms and uncommon words fails to meet the above requirements, indicating that viable expansion manners move beyond merely selecting words from a lexicon. Since OOD detection aims to correctly classify input images into ID/OOD class groups, we can "make up" OOD label candidates which are not standard class names but beneficial for the process. Observing that the original semantic pool is comprised of unmodified specific class names, we correspondingly construct a conjugated semantic pool (CSP) consisting of modified superclass names, each serving as a cluster center for samples sharing similar properties across different categories. Consistent with our established theory, expanding OOD label candidates with the CSP satisfies the requirements and outperforms existing works by 7.89% in FPR95.
Stand-Alone Self-Attention in Vision Models
Niki Parmar, Prajit Ramachandran, Ashish Vaswani, Irwan Bello, Anselm Levskaya, Jon Shlens
Convolutions are a fundamental building block of modern computer vision systems. Recent approaches have argued for going beyond convolutions in order to capture long-range dependencies. These efforts focus on augmenting convolutional models with content-based interactions, such as self-attention and non-local means, to achieve gains on a number of vision tasks. The natural question that arises is whether attention can be a stand-alone primitive for vision models instead of serving as just an augmentation on top of convolutions. In developing and testing a pure self-attention vision model, we verify that self-attention can indeed be an effective stand-alone layer.
Future-proof your career by mastering AI skills for just 20
If you're starting to feel a little behind in your career because you aren't completely proficient with AI, you don't need to worry. Even beginners can quickly master valuable AI skills without any tech background in the ChatGPT & Automation E-Degree program, and it's on sale right now for just 19.97 This program offers 12 captivating modules that allow you to immerse yourself in more than 25 hours of engaging coursework. It will transform your perception of the digital world. You'll master ChatGPT and over 20 AI tools that are indispensable in facing the dynamic challenges in today's coding, business, and marketing industries.
Reawakening knowledge: Anticipatory recovery from catastrophic interference via structured training Yanlai Yang 1, Matt Jones 2
We explore the training dynamics of neural networks in a structured non-IID setting where documents are presented cyclically in a fixed, repeated sequence. Typically, networks suffer from catastrophic interference when training on a sequence of documents; however, we discover a curious and remarkable property of LLMs finetuned sequentially in this setting: they exhibit anticipatory behavior, recovering from the forgetting on documents before encountering them again. This behavior occurs even though the documents are never presented in context together. The behavior emerges and becomes more robust as the architecture scales up its number of parameters. Through comprehensive experiments and visualizations, we demonstrate a new mechanism by which over-parametrized neural networks can recover from catastrophic interference and uncover new insights into training over-parameterized networks in cyclically structured environments.
A Appendix
A.1 UniBench Implementation Details We have developed UniBench to be easy-to-run library to allow researchers to systematically compare and contrast exsisting (n=59) and new VLMs on 53 benchmarks. To evaluate new VLMs that expand beyond the already implemented 59 VLMs, users need to follow Code Snippet 2. Users would need to create a class that inherent from ClipModel from uni_bench.models_zoo A.2 Natural Language Output Models on UniBench As described in Section 2.2, LLM-style models defined as models that generate tokens/text as output. Thereby, making them hard to compare with CLIP-style VLMs. In UniBench, we also incorporated LLM-style models in a control experiments.
UniBench: Visual Reasoning Requires Rethinking Vision-Language Beyond Scaling
Significant research efforts have been made to scale and improve vision-language model (VLM) training approaches. Yet, with an ever-growing number of benchmarks, researchers are tasked with the heavy burden of implementing each protocol, bearing a non-trivial computational cost, and making sense of how all these benchmarks translate into meaningful axes of progress. To facilitate a systematic evaluation of VLM progress, we introduce UniBench: a unified implementation of 50+ VLM benchmarks spanning a range of carefully categorized vision-centric capabilities from object recognition to spatial awareness, counting, and much more. We showcase the utility of UniBench for measuring progress by evaluating nearly 60 publicly available vision-language models, trained on scales of up to 12.8B samples. We find that while scaling training data or model size can boost many vision-language model capabilities, scaling offers little benefit for reasoning or relations.