Goto

Collaborating Authors

 Natural Language


DARE: Disentanglement-Augmented Rationale Extraction

Neural Information Processing Systems

Rationale extraction can be considered as a straightforward method of improving the model explainability, where rationales are a subsequence of the original inputs, and can be extracted to support the prediction results. Existing methods are mainly cascaded with the selector which extracts the rationale tokens, and the predictor which makes the prediction based on selected tokens. Since previous works fail to fully exploit the original input, where the information of non-selected tokens is ignored, in this paper, we propose a Disentanglement-Augmented Rationale Extraction (DARE) method, which encapsulates more information from the input to extract rationales. Specifically, it first disentangles the input into the rationale representations and the non-rationale ones, and then learns more comprehensive rationale representations for extracting by minimizing the mutual information (MI) between the two disentangled representations. Besides, to improve the performance of MI minimization, we develop a new MI estimator by exploring existing MI estimation methods. Extensive experimental results on three real-world datasets and simulation studies clearly validate the effectiveness of our proposed method. Code is released at https://github.com/yuelinan/DARE.


The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale

Neural Information Processing Systems

The performance of a large language model (LLM) depends heavily on the quality and size of its pretraining dataset. However, the pretraining datasets for state-ofthe-art open LLMs like Llama 3 and Mixtral are not publicly available and very little is known about how they were created. In this work, we introduce FineWeb, a 15-trillion token dataset derived from 96 Common Crawl snapshots that produces better-performing LLMs than other open pretraining datasets. To advance the understanding of how best to curate high-quality pretraining datasets, we carefully document and ablate all of the design choices used in FineWeb, including indepth investigations of deduplication and filtering strategies. In addition, we introduce FineWeb-Edu, a 1.3-trillion token collection of educational text filtered from FineWeb.


Appendix: Not All Low-Pass Filters are Robust in Graph Convolutional Networks 15 B Broader Impact 16 C Additional Related Work 16 D Additional Preliminaries on Graph Signal Filtering

Neural Information Processing Systems

For all authors... (a) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? If you ran experiments... (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes] (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? If you used crowdsourcing or conducted research with human subjects... (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A] (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A] (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? Graph Convolutional Networks (GCNs) could be crucial tools for a broad range of applications, including social networks, computer vision, natural language processing, traffic prediction, chemistry, protein design, recommendation system and so on [64, 58]. Any of these applications may have a different social effect. The use of GCNs could improve protein design efficiency and lead to the development of new medicines, but it could also result in job losses.


7 Appendix A Limitations

Neural Information Processing Systems

Table 6 provides summary statistics of domain coverage. Overall, the benchmark covers 8,637 biology images and 8,678 pathology images across 12 subdomains. Similarly, Table 7 shows summary statistics of microscopy modalities covered by Micro-Bench perception, including 10,864 images for light microscopy, 5,618 for fluorescence microscopy, and 833 images for electron microscopy across 8 microscopy imaging submodalities and 25 unique microscopy staining techniques (see Table 8). Micro-Bench Perception (Coarse-grained): Hierarchical metadata for each of the 17,235 perception images and task-specific templates (shown in Table 23) are used to create 5 coarse-grained questions and captions regarding microscopy modality, submodality, domain, subdomain, and staining technique. The use of hierarchical metadata enables the generation of options within each hierarchical level.


MACD: Multilingual Abusive Comment Detection at Scale for Indic Languages

Neural Information Processing Systems

Social media platforms were conceived to act as online'town squares' where people could get together, share information and communicate with each other peacefully. However, harmful content borne out of bad actors are constantly plaguing these platforms slowly converting them into'mosh pits' where the bad actors take the liberty to extensively abuse various marginalised groups. Accurate and timely detection of abusive content on social media platforms is therefore very important for facilitating safe interactions between users. However, due to the small scale and sparse linguistic coverage of Indic abusive speech datasets, development of such algorithms for Indic social media users (one-sixth of global population) is severely impeded.


On Giant's Shoulders: Effortless Weakto Strong by Dynamic Logits Fusion

Neural Information Processing Systems

Efficient fine-tuning of large language models for task-specific applications is imperative, yet the vast number of parameters in these models makes their training increasingly challenging. Despite numerous proposals for effective methods, a substantial memory overhead remains for gradient computations during updates. Can we fine-tune a series of task-specific small models and transfer their knowledge directly to a much larger model without additional training? In this paper, we explore weak-to-strong specialization using logit arithmetic, facilitating a direct answer to this question. Existing weak-to-strong methods often employ a static knowledge transfer ratio and a single small model for transferring complex knowledge, which leads to suboptimal performance.


Tactile DreamFusion: Exploiting Tactile Sensing for 3D Generation Gengshan Yang

Neural Information Processing Systems

However, they often fail to produce realistic geometric details, resulting in overly smooth surfaces or geometric details inaccurately baked in albedo maps. To address this, we introduce a new method that incorporates touch as an additional modality to improve the geometric details of generated 3D assets. We design a lightweight 3D texture field to synthesize visual and tactile textures, guided by 2D diffusion model priors on both visual and tactile domains. We condition the visual texture generation on high-resolution tactile normals and guide the patch-based tactile texture refinement with a customized TextureDreambooth. We further present a multi-part generation pipeline that enables us to synthesize different textures across various regions. To our knowledge, we are the first to leverage high-resolution tactile sensing to enhance geometric details for 3D generation tasks. We evaluate our method in both text-to-3D and image-to-3D settings. Our experiments demonstrate that our method provides customized and realistic fine geometric textures while maintaining accurate alignment between two modalities of vision and touch.


Q: Question-Asking LLMs and a Benchmark for Reliable Interactive Clinical Reasoning

Neural Information Processing Systems

Users typically engage with LLMs interactively, yet most existing benchmarks evaluate them in a static, single-turn format, posing reliability concerns in interactive scenarios. We identify a key obstacle towards reliability: LLMs are trained to answer any question, even with incomplete context or insufficient knowledge.



Hisense taps new Google Home APIs to expand smart home integration

PCWorld

Google issued 100 announcements during its Google I/O developers conference this week, none of which involved the smart home. That apparent lack of enthusiasm for a topic close to our heart didn't dissuade TV and smart-appliance manufacturer Hisense from announcing plans to integrate new Google Home APIs into its own ConnectLife app, so that third-party smart home devices can be folded into that ecosystem. Hisense first announced that it would open its ConnectLife app to third-party products in December, 2024. Today, it announced it will incorporate the latest Google Home APIs into the app by the fall of 2025, Hisense says this will enable users to onboard a wide range of third-party smart home devices--including Matter and Works With Google Home-certified products--to create a more integrated smart home experience. Hisense cited two examples of how this would benefit ConnectLife users: "One-touch modes and customized automations can blend Hisense products with third-party devices to create intelligent home responses, such as air conditioners automatically adjusting based on third-party air quality sensors, or smart lights providing visual notifications when the Hisense refrigerator's VersaTemp drawer reaches the ideal temperature for chilling drinks."