Goto

Collaborating Authors

 Natural Language


Talking Heads: Understanding Inter-layer Communication in Transformer Language Models

Neural Information Processing Systems

Although it is known that transformer language models (LMs) pass features from early layers to later layers, it is not well understood how this information is represented and routed by the model. We analyze a mechanism used in two LMs to selectively inhibit items in a context in one task, and find that it underlies a commonly used abstraction across many context-retrieval behaviors. Specifically, we find that models write into low-rank subspaces of the residual stream to represent features which are then read out by later layers, forming low-rank communication channels [Elhage et al., 2021] between layers. A particular 3D subspace in model activations in GPT-2 can be traversed to positionally index items in lists, and we show that this mechanism can explain an otherwise arbitrary-seeming sensitivity of the model to the order of items in the prompt. That is, the model has trouble copying the correct information from context when many items "crowd" this limited space. By decomposing attention heads with the Singular Value Decomposition (SVD), we find that previously described interactions between heads separated by one or more layers can be predicted via analysis of their weight matrices alone. We show that it is possible to manipulate the internal model representations as well as edit model weights based on the mechanism we discover in order to significantly improve performance on our synthetic Laundry List task, which requires recall from a list, often improving task accuracy by over 20%. Our analysis reveals a surprisingly intricate interpretable structure learned from language model pretraining, and helps us understand why sophisticated LMs sometimes fail in simple domains, facilitating future analysis of more complex behaviors.



PACE: Marrying generalization in PArameter-efficient fine-tuning with Consistency rEgularization

Neural Information Processing Systems

However, the optimization of tasks performance often comes at the cost of generalizability in fine-tuned models. To address this issue, we theoretically connect smaller weight gradient norms during training and larger datasets to the improvements in model generalization. Motivated by this connection, we propose reducing gradient norms for enhanced generalization and aligning finetuned model with the pre-trained counterpart to retain knowledge from large-scale pre-training data. Yet, naive alignment does not guarantee gradient reduction and can potentially cause gradient explosion, complicating efforts to manage gradients. To address such an issue, we propose PACE, marrying generalization of PArameterefficient fine-tuning with Consistency rEgularization. We perturb features learned from the adapter with the multiplicative noise and ensure the fine-tuned model remains consistent for same sample under different perturbations. Theoretical analysis shows that PACE not only implicitly regularizes gradients for enhanced generalization, but also implicitly aligns the fine-tuned and pre-trained models to retain knowledge. Experimental evidence supports our theories.


Trans-LoRA: towards data-free Transferable Parameter Efficient Finetuning

Neural Information Processing Systems

Low-rank adapters (LoRA) and their variants are popular parameter-efficient fine-tuning (PEFT) techniques that closely match full model fine-tune performance while requiring only a small number of additional parameters. These additional LoRA parameters are specific to the base model being adapted. When the base model needs to be deprecated and replaced with a new one, all the associated LoRA modules need to be re-trained. Such re-training requires access to the data used to train the LoRA for the original base model. This is especially problematic for commercial cloud applications where the LoRA modules and the base models are hosted by service providers who may not be allowed to host proprietary client task data. To address this challenge, we propose Trans-LoRA-- a novel method for lossless, nearly data-free transfer of LoRAs across base models. Our approach relies on synthetic data to transfer LoRA modules. Using large language models, we design a synthetic data generator to approximate the datagenerating process of the observed task data subset.


Repurposing Language Models into Embedding Models: Finding the Compute-Optimal Recipe Bartosz Piotrowski University of Cambridge IDEAS NCBR IDEAS NCBR University of Warsaw IMPAN Wenda Li Mateja Jamnik

Neural Information Processing Systems

Text embeddings are essential for many tasks, such as document retrieval, clustering, and semantic similarity assessment. In this paper, we study how to contrastively train text embedding models in a compute-optimal fashion, given a suite of pre-trained decoder-only language models. Our innovation is an algorithm that produces optimal configurations of model sizes, data quantities, and fine-tuning methods for text-embedding models at different computational budget levels. The resulting recipe, which we obtain through extensive experiments, can be used by practitioners to make informed design choices for their embedding models. Specifically, our findings suggest that full fine-tuning and low-rank adaptation fine-tuning produce optimal models at lower and higher computational budgets respectively.


Tree of Attacks: Jailbreaking Black-Box LLMs Automatically Manolis Zampetakis Yale University

Neural Information Processing Systems

While Large Language Models (LLMs) display versatile functionality, they continue to generate harmful, biased, and toxic content, as demonstrated by the prevalence of human-designed jailbreaks. In this work, we present Tree of Attacks with Pruning (TAP), an automated method for generating jailbreaks that only requires black-box access to the target LLM. TAP utilizes an attacker LLM to iteratively refine candidate (attack) prompts until one of the refined prompts jailbreaks the target. In addition, before sending prompts to the target, TAP assesses them and prunes the ones unlikely to result in jailbreaks, reducing the number of queries sent to the target LLM. In empirical evaluations, we observe that TAP generates prompts that jailbreak state-of-the-art LLMs (including GPT4-Turbo and GPT4o) for more than 80% of the prompts. This significantly improves upon the previous state-of-the-art black-box methods for generating jailbreaks while using a smaller number of queries than them. Furthermore, TAP is also capable of jailbreaking LLMs protected by state-of-the-art guardrails, e.g., LlamaGuard.


TEG-DB: A Comprehensive Dataset and Benchmark of Textual-Edge Graphs

Neural Information Processing Systems

Text-Attributed Graphs (TAGs) augment graph structures with natural language descriptions, facilitating detailed depictions of data and their interconnections across various real-world settings. However, existing TAG datasets predominantly feature textual information only at the nodes, with edges typically represented by mere binary or categorical attributes. This lack of rich textual edge annotations significantly limits the exploration of contextual relationships between entities, hindering deeper insights into graph-structured data. To address this gap, we introduce Textual-Edge Graphs Datasets and Benchmark (TEG-DB), a comprehensive and diverse collection of benchmark textual-edge datasets featuring rich textual descriptions on nodes and edges. The TEG-DB datasets are large-scale and encompass a wide range of domains, from citation networks to social networks. In addition, we conduct extensive benchmark experiments on TEG-DB to assess the extent to which current techniques, including pre-trained language models (PLMs), graph neural networks (GNNs), proposed novel entangled GNNs and their combinations, can utilize textual node and edge information. Our goal is to elicit advancements in textual-edge graph research, specifically in developing methodologies that exploit rich textual node and edge descriptions to enhance graph analysis and provide deeper insights into complex real-world networks.


HW-Aware-GPT-Bench

Neural Information Processing Systems

Answer: [Yes] Justification: The claims made in the abstract and intro accurately reflect the contributions and scope of our paper Guidelines: The answer NA means that the abstract and introduction do not include the claims made in the paper. The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers. The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings. It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.


HW-Aware-GPT-Bench

Neural Information Processing Systems

The increasing size of language models necessitates a thorough analysis across multiple dimensions to assess trade-offs among crucial hardware metrics such as latency, energy consumption, GPU memory usage, and performance. Identifying optimal model configurations under specific hardware constraints is becoming essential but remains challenging due to the computational load of exhaustive training and evaluation on multiple devices. To address this, we introduce HW-GPT-Bench, a hardware-aware benchmark that utilizes surrogate predictions to approximate various hardware metrics across 13 devices of architectures in the GPT-2 family, with architectures containing up to 1.55B parameters. Our surrogates, via calibrated predictions and reliable uncertainty estimates, faithfully model the heteroscedastic noise inherent in the energy and latency measurements. To estimate perplexity, we employ weight-sharing techniques from Neural Architecture Search (NAS), inheriting pretrained weights from the largest GPT-2 model. Finally, we demonstrate the utility of HW-GPT-Bench by simulating optimization trajectories of various multi-objective optimization algorithms in just a few seconds.


Found in the Middle: How Language Models Use Long Contexts Better via Plug-and-Play Positional Encoding

Neural Information Processing Systems

This paper aims to overcome the "lost-in-the-middle" challenge of large language models (LLMs). While recent advancements have successfully enabled LLMs to perform stable language modeling with up to 4 million tokens, the persistent difficulty faced by most LLMs in identifying relevant information situated in the middle of the context has not been adequately tackled. To address this problem, this paper introduces Multi-scale Positional Encoding (Ms-PoE) which is a simple yet effective plug-and-play approach to enhance the capacity of LLMs to handle the relevant information located in the middle of the context, without fine-tuning or introducing any additional overhead. Ms-PoE leverages the position indice rescaling to relieve the long-term decay effect introduced by RoPE, while meticulously assigning distinct scaling ratios to different attention heads to preserve essential knowledge learned during the pre-training step, forming a multi-scale context fusion from short to long distance. Extensive experiments with a wide range of LLMs demonstrate the efficacy of our approach. Notably, Ms-PoE achieves an average accuracy gain of up to 3.8 on the Zero-SCROLLS benchmark over the original LLMs.