Natural Language
Word Features for Latent Dirichlet Allocation
Petterson, James, Buntine, Wray, Narayanamurthy, Shravan M., Caetano, Tibério S., Smola, Alex J.
We extend Latent Dirichlet Allocation (LDA) by explicitly allowing for the encoding of side information in the distribution over words. This results in a variety of new capabilities, such as improved estimates for infrequently occurring words, as well as the ability to leverage thesauri and dictionaries in order to boost topic cohesion within and across languages. We present experiments on multi-language topic synchronisation where dictionary information is used to bias corresponding words towards similar topics. Results indicate that our model substantially improves topic cohesion when compared to the standard LDA model.
Why are some word orders more common than others? A uniform information density account
Maurits, Luke, Navarro, Dan, Perfors, Amy
Languages vary widely in many ways, including their canonical word order. A basic aspect of the observed variation is the fact that some word orders are much more common than others. Although this regularity has been recognized for some time, it has not been well-explained. In this paper we offer an information-theoretic explanation for the observed word-order distribution across languages, based on the concept of Uniform Information Density (UID). We suggest that object-first languages are particularly disfavored because they are highly non-optimal if the goal is to distribute information content approximately evenly throughout a sentence, and that the rest of the observed word-order distribution is at least partially explainable in terms of UID. We support our theoretical analysis with data from child-directed speech and experimental work.
Shadow Dirichlet for Restricted Probability Modeling
Frigyik, Bela, Gupta, Maya, Chen, Yihua
Although the Dirichlet distribution is widely used, the independence structure of its components limits its accuracy as a model. The proposed shadow Dirichlet distribution manipulates the support in order to model probability mass functions (pmfs) with dependencies or constraints that often arise in real world problems, such as regularized pmfs, monotonic pmfs, and pmfs with bounded variation. We describe some properties of this new class of distributions, provide maximum entropy constructions, give an expectation-maximization method for estimating the mean parameter, and illustrate with real data.
A Discriminative Latent Model of Image Region and Object Tag Correspondence
We propose a discriminative latent model for annotating images with unaligned object-level textual annotations. Instead of using the bag-of-words image representation currently popular in the computer vision community, our model explicitly captures more intricate relationships underlying visual and textual information. In particular, we model the mapping that translates image regions to annotations. This mapping allows us to relate image regions to their corresponding annotation terms. We also model the overall scene label as latent information. This allows us to cluster test images. Our training data consist of images and their associated annotations. But we do not have access to the ground-truth region-to-annotation mapping or the overall scene label. We develop a novel variant of the latent SVM framework to model them as latent variables. Our experimental results demonstrate the effectiveness of the proposed model compared with other baseline methods.
Predictive Subspace Learning for Multi-view Data: a Large Margin Approach
Chen, Ning, Zhu, Jun, Xing, Eric P.
Learning from multi-view data is important in many applications, such as image classification and annotation. In this paper, we present a large-margin learning framework to discover a predictive latent subspace representation shared by multiple views. Our approach is based on an undirected latent space Markov network that fulfills a weak conditional independence assumption that multi-view observations and response variables are independent given a set of latent variables. We provide efficient inference and parameter estimation methods for the latent subspace model. Finally, we demonstrate the advantages of large-margin learning on real video and web image data for discovering predictive latent representations and improving the performance on image classification, annotation and retrieval.
Deterministic Single-Pass Algorithm for LDA
Sato, Issei, Kurihara, Kenichi, Nakagawa, Hiroshi
We develop a deterministic single-pass algorithm for latent Dirichlet allocation (LDA) in order to process received documents one at a time and then discard them in an excess text stream. Our algorithm does not need to store old statistics for all data. The proposed algorithm is much faster than a batch algorithm and is comparable to the batch algorithm in terms of perplexity in experiments.
b-Bit Minwise Hashing for Estimating Three-Way Similarities
Li, Ping, Konig, Arnd, Gui, Wenhao
Computing two-way and multi-way set similarities is a fundamental problem. This study focuses on estimating 3-way resemblance (Jaccard similarity) using b-bit minwise hashing. While traditional minwise hashing methods store each hashed value using 64 bits, b-bit minwise hashing only stores the lowest b bits (where b>= 2 for 3-way). The extension to 3-way similarity from the prior work on 2-way similarity is technically non-trivial. We develop the precise estimator which is accurate and very complicated; and we recommend a much simplified estimator suitable for sparse data. Our analysis shows that $b$-bit minwise hashing can normally achieve a 10 to 25-fold improvement in the storage space required for a given estimator accuracy of the 3-way resemblance.
Empirical Risk Minimization with Approximations of Probabilistic Grammars
Smith, Noah A., Cohen, Shay B.
Probabilistic grammars are generative statistical models that are useful for compositional and sequential structures. We present a framework, reminiscent of structural risk minimization, for empirical risk minimization of the parameters of a fixed probabilistic grammar using the log-loss. We derive sample complexity bounds in this framework that apply both to the supervised setting and the unsupervised setting.
Synergies in learning words and their referents
Johnson, Mark, Demuth, Katherine, Jones, Bevan, Black, Michael J.
This paper presents Bayesian non-parametric models that simultaneously learn to segment words from phoneme strings and learn the referents of some of those words, and shows that there is a synergistic interaction in the acquisition of these two kinds of linguistic information. The models themselves are novel kinds of Adaptor Grammars that are an extension of an embedding of topic models into PCFGs. These models simultaneously segment phoneme sequences into words and learn the relationship between non-linguistic objects to the words that refer to them. We show (i) that modelling inter-word dependencies not only improves the accuracy of the word segmentation but also of word-object relationships, and (ii) that a model that simultaneously learns word-object relationships and word segmentation segments more accurately than one that just learns word segmentation on its own. We argue that these results support an interactive view of language acquisition that can take advantage of synergies such as these.
Online Learning for Latent Dirichlet Allocation
Hoffman, Matthew, Bach, Francis R., Blei, David M.
We develop an online variational Bayes (VB) algorithm for Latent Dirichlet Allocation (LDA). Online LDA is based on online stochastic optimization with a natural gradient step, which we show converges to a local optimum of the VB objective function. It can handily analyze massive document collections, including those arriving in a stream. We study the performance of online LDA in several ways, including by fitting a 100-topic topic model to 3.3M articles from Wikipedia in a single pass. We demonstrate that online LDA finds topic models as good or better than those found with batch VB, and in a fraction of the time.