Natural Language
I just watched Gmail generate AI responses for me - and they were scarily accurate
The Google I/O keynote took place earlier this week, and the company took the stage to unveil new features across all of its product offerings. This included AI upgrades to the Google Workspace suite of applications, which millions of users rely on every day to get their work done, including Google Docs, Meet, Slides, Gmail, and Vids. Also: Google's popular AI tool gets its own Android app - how to use NotebookLM on your phone The features unveiled this year focused on practicality. They embed AI features into the Google apps you already use every day to speed up your daily workflow by performing tedious and time-consuming tasks, such as cleaning out your inbox. Everyone can relate to being bombarded with emails.
Assessing Social and Intersectional Biases in Contextualized Word Representations
Social bias in machine learning has drawn significant attention, with work ranging from demonstrations of bias in a multitude of applications, curating definitions of fairness for different contexts, to developing algorithms to mitigate bias. In natural language processing, gender bias has been shown to exist in context-free word embeddings. Recently, contextual word representations have outperformed word embeddings in several downstream NLP tasks. These word representations are conditioned on their context within a sentence, and can also be used to encode the entire sentence. In this paper, we analyze the extent to which state-of-the-art models for contextual word representations, such as BERT and GPT-2, encode biases with respect to gender, race, and intersectional identities. Towards this, we propose assessing bias at the contextual word level. This novel approach captures the contextual effects of bias missing in context-free word embeddings, yet avoids confounding effects that underestimate bias at the sentence encoding level. We demonstrate evidence of bias at the corpus level, find varying evidence of bias in embedding association tests, show in particular that racial bias is strongly encoded in contextual word models, and observe that bias effects for intersectional minorities are exacerbated beyond their constituent minority identities. Further, evaluating bias effects at the contextual word level captures biases that are not captured at the sentence level, confirming the need for our novel approach.
Unpaired Image-to-Image Translation with Density Changing Regularization
Unpaired image-to-image translation aims to translate an input image to another domain such that the output image looks like an image from another domain while important semantic information are preserved. Inferring the optimal mapping with unpaired data is impossible without making any assumptions. In this paper, we make a density changing assumption where image patches of high probability density should be mapped to patches of high probability density in another domain. Then we propose an efficient way to enforce this assumption: we train the flows as density estimators and penalize the variance of density changes. Despite its simplicity, our method achieves the best performance on benchmark datasets and needs only 56 86% of training time of the existing state-of-the-art method. The training and evaluation code are avaliable at https://github.com/Mid-Push/
Inside OpenAI's Empire
OpenAI started as a non-profit dedicated to building safe A.I. Now, they're obsessed with building artificial general intelligence by any means necessary - even if they don't quite know what that is. Subscribe to Slate Plus to access ad-free listening to the whole What Next family and all your favorite Slate podcasts. Subscribe today on Apple Podcasts by clicking "Try Free" at the top of our show page. Sign up now at slate.com/whatnextplus to get access wherever you listen.
Masked Pre-training Enables Universal Zero-shot Denoiser 1 Yi Jin
In this work, we observe that model trained on vast general images via masking strategy, has been naturally embedded with their distribution knowledge, thus spontaneously attains the underlying potential for strong image denoising. Based on this observation, we propose a novel zero-shot denoising paradigm, i.e., Masked Pre-train then Iterative fill (MPI). MPI first trains model via masking and then employs pre-trained weight for high-quality zero-shot image denoising on a single noisy image. Concretely, MPI comprises two key procedures: 1) Masked Pre-training involves training model to reconstruct massive natural images with random masking for generalizable representations, gathering the potential for valid zero-shot denoising on images with varying noise degradation and even in distinct image types.
Reformulating Zero-shot Action Recognition for Multi-label Actions (Supplementary Material)
Standard video models expect frame dimensions with the same height and width, so we crop a square region around the actor and resize it to the network specific dimensions (112 112). We present some examples of AVA video frames with their annotations as well as the generated crops in Figure 1. This square crop can cause multiple actors to appear within one clip, as seen in the second example, but it ensures the aspect ratio of the person is not altered, which is necessary as this is the manner in which the video model is trained. Figure 1: Example of original ground-truth bounding boxes (left) in the AVA dataset, with the cropped actors on the right. For PS-ZSAR prediction confidences are obtained from the softmax probabilities output by our pair-wise similarity function.
Bringing Image Structure to Video via Frame-Clip Consistency of Object Tokens
Recent action recognition models have achieved impressive results by integrating objects, their locations and interactions. However, obtaining dense structured annotations for each frame is tedious and time-consuming, making these methods expensive to train and less scalable. On the other hand, one does often have access to a small set of annotated images, either within or outside the domain of interest. Here we ask how such images can be leveraged for downstream video understanding tasks. We propose a learning framework StructureViT (SViT for short), which demonstrates how utilizing the structure of a small number of images only available during training can improve a video model.
DARE: Disentanglement-Augmented Rationale Extraction
Rationale extraction can be considered as a straightforward method of improving the model explainability, where rationales are a subsequence of the original inputs, and can be extracted to support the prediction results. Existing methods are mainly cascaded with the selector which extracts the rationale tokens, and the predictor which makes the prediction based on selected tokens. Since previous works fail to fully exploit the original input, where the information of non-selected tokens is ignored, in this paper, we propose a Disentanglement-Augmented Rationale Extraction (DARE) method, which encapsulates more information from the input to extract rationales. Specifically, it first disentangles the input into the rationale representations and the non-rationale ones, and then learns more comprehensive rationale representations for extracting by minimizing the mutual information (MI) between the two disentangled representations. Besides, to improve the performance of MI minimization, we develop a new MI estimator by exploring existing MI estimation methods. Extensive experimental results on three real-world datasets and simulation studies clearly validate the effectiveness of our proposed method. Code is released at https://github.com/yuelinan/DARE.
The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale
The performance of a large language model (LLM) depends heavily on the quality and size of its pretraining dataset. However, the pretraining datasets for state-ofthe-art open LLMs like Llama 3 and Mixtral are not publicly available and very little is known about how they were created. In this work, we introduce FineWeb, a 15-trillion token dataset derived from 96 Common Crawl snapshots that produces better-performing LLMs than other open pretraining datasets. To advance the understanding of how best to curate high-quality pretraining datasets, we carefully document and ablate all of the design choices used in FineWeb, including indepth investigations of deduplication and filtering strategies. In addition, we introduce FineWeb-Edu, a 1.3-trillion token collection of educational text filtered from FineWeb.
Appendix: Not All Low-Pass Filters are Robust in Graph Convolutional Networks 15 B Broader Impact 16 C Additional Related Work 16 D Additional Preliminaries on Graph Signal Filtering
For all authors... (a) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? If you ran experiments... (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes] (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? If you used crowdsourcing or conducted research with human subjects... (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A] (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A] (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? Graph Convolutional Networks (GCNs) could be crucial tools for a broad range of applications, including social networks, computer vision, natural language processing, traffic prediction, chemistry, protein design, recommendation system and so on [64, 58]. Any of these applications may have a different social effect. The use of GCNs could improve protein design efficiency and lead to the development of new medicines, but it could also result in job losses.